File size: 7,818 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#
"""Unility functions for Transformer."""

import math
from typing import List, Tuple

import torch
from torch.nn.utils.rnn import pad_sequence

IGNORE_ID = -1


def pad_list(xs: List[torch.Tensor], pad_value: int):
    """Perform padding for the list of tensors.

    Args:
        xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
        pad_value (float): Value for padding.

    Returns:
        Tensor: Padded tensor (B, Tmax, `*`).

    Examples:
        >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
        >>> x
        [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
        >>> pad_list(x, 0)
        tensor([[1., 1., 1., 1.],
                [1., 1., 0., 0.],
                [1., 0., 0., 0.]])

    """
    n_batch = len(xs)
    max_len = max([x.size(0) for x in xs])
    pad = torch.zeros(n_batch, max_len, dtype=xs[0].dtype, device=xs[0].device)
    pad = pad.fill_(pad_value)
    for i in range(n_batch):
        pad[i, : xs[i].size(0)] = xs[i]

    return pad


def add_blank(ys_pad: torch.Tensor, blank: int, ignore_id: int) -> torch.Tensor:
    """Prepad blank for transducer predictor

    Args:
        ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
        blank (int): index of <blank>

    Returns:
        ys_in (torch.Tensor) : (B, Lmax + 1)

    Examples:
        >>> blank = 0
        >>> ignore_id = -1
        >>> ys_pad
        tensor([[ 1,  2,  3,   4,   5],
                [ 4,  5,  6,  -1,  -1],
                [ 7,  8,  9,  -1,  -1]], dtype=torch.int32)
        >>> ys_in = add_blank(ys_pad, 0, -1)
        >>> ys_in
        tensor([[0,  1,  2,  3,  4,  5],
                [0,  4,  5,  6,  0,  0],
                [0,  7,  8,  9,  0,  0]])
    """
    bs = ys_pad.size(0)
    _blank = torch.tensor(
        [blank], dtype=torch.long, requires_grad=False, device=ys_pad.device
    )
    _blank = _blank.repeat(bs).unsqueeze(1)  # [bs,1]
    out = torch.cat([_blank, ys_pad], dim=1)  # [bs, Lmax+1]
    return torch.where(out == ignore_id, blank, out)


def add_sos_eos(
    ys_pad: torch.Tensor, sos: int, eos: int, ignore_id: int
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Add <sos> and <eos> labels.

    Args:
        ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
        sos (int): index of <sos>
        eos (int): index of <eeos>
        ignore_id (int): index of padding

    Returns:
        ys_in (torch.Tensor) : (B, Lmax + 1)
        ys_out (torch.Tensor) : (B, Lmax + 1)

    Examples:
        >>> sos_id = 10
        >>> eos_id = 11
        >>> ignore_id = -1
        >>> ys_pad
        tensor([[ 1,  2,  3,  4,  5],
                [ 4,  5,  6, -1, -1],
                [ 7,  8,  9, -1, -1]], dtype=torch.int32)
        >>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
        >>> ys_in
        tensor([[10,  1,  2,  3,  4,  5],
                [10,  4,  5,  6, 11, 11],
                [10,  7,  8,  9, 11, 11]])
        >>> ys_out
        tensor([[ 1,  2,  3,  4,  5, 11],
                [ 4,  5,  6, 11, -1, -1],
                [ 7,  8,  9, 11, -1, -1]])
    """
    _sos = torch.tensor(
        [sos], dtype=torch.long, requires_grad=False, device=ys_pad.device
    )
    _eos = torch.tensor(
        [eos], dtype=torch.long, requires_grad=False, device=ys_pad.device
    )
    ys = [y[y != ignore_id] for y in ys_pad]  # parse padded ys
    ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
    ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
    return pad_list(ys_in, eos), pad_list(ys_out, ignore_id)


def reverse_pad_list(
    ys_pad: torch.Tensor, ys_lens: torch.Tensor, pad_value: float = -1.0
) -> torch.Tensor:
    """Reverse padding for the list of tensors.

    Args:
        ys_pad (tensor): The padded tensor (B, Tokenmax).
        ys_lens (tensor): The lens of token seqs (B)
        pad_value (int): Value for padding.

    Returns:
        Tensor: Padded tensor (B, Tokenmax).

    Examples:
        >>> x
        tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
        >>> pad_list(x, 0)
        tensor([[4, 3, 2, 1],
                [7, 6, 5, 0],
                [9, 8, 0, 0]])

    """
    r_ys_pad = pad_sequence(
        [(torch.flip(y.int()[:i], [0])) for y, i in zip(ys_pad, ys_lens)],
        True,
        pad_value,
    )
    return r_ys_pad


def th_accuracy(
    pad_outputs: torch.Tensor, pad_targets: torch.Tensor, ignore_label: int
) -> float:
    """Calculate accuracy.

    Args:
        pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
        pad_targets (LongTensor): Target label tensors (B, Lmax).
        ignore_label (int): Ignore label id.

    Returns:
        float: Accuracy value (0.0 - 1.0).

    """
    pad_pred = pad_outputs.view(
        pad_targets.size(0), pad_targets.size(1), pad_outputs.size(1)
    ).argmax(2)
    mask = pad_targets != ignore_label
    numerator = torch.sum(
        pad_pred.masked_select(mask) == pad_targets.masked_select(mask)
    )
    denominator = torch.sum(mask)
    return float(numerator) / float(denominator)


def get_rnn(rnn_type: str) -> torch.nn.Module:
    assert rnn_type in ["rnn", "lstm", "gru"]
    if rnn_type == "rnn":
        return torch.nn.RNN
    elif rnn_type == "lstm":
        return torch.nn.LSTM
    else:
        return torch.nn.GRU


def get_activation(act):
    """Return activation function."""
    # Lazy load to avoid unused import
    from modules.wenet_extractor.transformer.swish import Swish

    activation_funcs = {
        "hardtanh": torch.nn.Hardtanh,
        "tanh": torch.nn.Tanh,
        "relu": torch.nn.ReLU,
        "selu": torch.nn.SELU,
        "swish": getattr(torch.nn, "SiLU", Swish),
        "gelu": torch.nn.GELU,
    }

    return activation_funcs[act]()


def get_subsample(config):
    input_layer = config["encoder_conf"]["input_layer"]
    assert input_layer in ["conv2d", "conv2d6", "conv2d8"]
    if input_layer == "conv2d":
        return 4
    elif input_layer == "conv2d6":
        return 6
    elif input_layer == "conv2d8":
        return 8


def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
    new_hyp: List[int] = []
    cur = 0
    while cur < len(hyp):
        if hyp[cur] != 0:
            new_hyp.append(hyp[cur])
        prev = cur
        while cur < len(hyp) and hyp[cur] == hyp[prev]:
            cur += 1
    return new_hyp


def replace_duplicates_with_blank(hyp: List[int]) -> List[int]:
    new_hyp: List[int] = []
    cur = 0
    while cur < len(hyp):
        new_hyp.append(hyp[cur])
        prev = cur
        cur += 1
        while cur < len(hyp) and hyp[cur] == hyp[prev] and hyp[cur] != 0:
            new_hyp.append(0)
            cur += 1
    return new_hyp


def log_add(args: List[int]) -> float:
    """
    Stable log add
    """
    if all(a == -float("inf") for a in args):
        return -float("inf")
    a_max = max(args)
    lsp = math.log(sum(math.exp(a - a_max) for a in args))
    return a_max + lsp