Spaces:
Running
Running
File size: 9,643 Bytes
0d80816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import sys
import random
import math
import torchaudio
import torch
torchaudio.set_audio_backend("sox_io")
def db2amp(db):
return pow(10, db / 20)
def amp2db(amp):
return 20 * math.log10(amp)
def make_poly_distortion(conf):
"""Generate a db-domain ploynomial distortion function
f(x) = a * x^m * (1-x)^n + x
Args:
conf: a dict {'a': #int, 'm': #int, 'n': #int}
Returns:
The ploynomial function, which could be applied on
a float amplitude value
"""
a = conf["a"]
m = conf["m"]
n = conf["n"]
def poly_distortion(x):
abs_x = abs(x)
if abs_x < 0.000001:
x = x
else:
db_norm = amp2db(abs_x) / 100 + 1
if db_norm < 0:
db_norm = 0
db_norm = a * pow(db_norm, m) * pow((1 - db_norm), n) + db_norm
if db_norm > 1:
db_norm = 1
db = (db_norm - 1) * 100
amp = db2amp(db)
if amp >= 0.9997:
amp = 0.9997
if x > 0:
x = amp
else:
x = -amp
return x
return poly_distortion
def make_quad_distortion():
return make_poly_distortion({"a": 1, "m": 1, "n": 1})
# the amplitude are set to max for all non-zero point
def make_max_distortion(conf):
"""Generate a max distortion function
Args:
conf: a dict {'max_db': float }
'max_db': the maxium value.
Returns:
The max function, which could be applied on
a float amplitude value
"""
max_db = conf["max_db"]
if max_db:
max_amp = db2amp(max_db) # < 0.997
else:
max_amp = 0.997
def max_distortion(x):
if x > 0:
x = max_amp
elif x < 0:
x = -max_amp
else:
x = 0.0
return x
return max_distortion
def make_amp_mask(db_mask=None):
"""Get a amplitude domain mask from db domain mask
Args:
db_mask: Optional. A list of tuple. if None, using default value.
Returns:
A list of tuple. The amplitude domain mask
"""
if db_mask is None:
db_mask = [(-110, -95), (-90, -80), (-65, -60), (-50, -30), (-15, 0)]
amp_mask = [(db2amp(db[0]), db2amp(db[1])) for db in db_mask]
return amp_mask
default_mask = make_amp_mask()
def generate_amp_mask(mask_num):
"""Generate amplitude domain mask randomly in [-100db, 0db]
Args:
mask_num: the slot number of the mask
Returns:
A list of tuple. each tuple defines a slot.
e.g. [(-100, -80), (-65, -60), (-50, -30), (-15, 0)]
for #mask_num = 4
"""
a = [0] * 2 * mask_num
a[0] = 0
m = []
for i in range(1, 2 * mask_num):
a[i] = a[i - 1] + random.uniform(0.5, 1)
max_val = a[2 * mask_num - 1]
for i in range(0, mask_num):
l = ((a[2 * i] - max_val) / max_val) * 100
r = ((a[2 * i + 1] - max_val) / max_val) * 100
m.append((l, r))
return make_amp_mask(m)
def make_fence_distortion(conf):
"""Generate a fence distortion function
In this fence-like shape function, the values in mask slots are
set to maxium, while the values not in mask slots are set to 0.
Use seperated masks for Positive and negetive amplitude.
Args:
conf: a dict {'mask_number': int,'max_db': float }
'mask_number': the slot number in mask.
'max_db': the maxium value.
Returns:
The fence function, which could be applied on
a float amplitude value
"""
mask_number = conf["mask_number"]
max_db = conf["max_db"]
max_amp = db2amp(max_db) # 0.997
if mask_number <= 0:
positive_mask = default_mask
negative_mask = make_amp_mask([(-50, 0)])
else:
positive_mask = generate_amp_mask(mask_number)
negative_mask = generate_amp_mask(mask_number)
def fence_distortion(x):
is_in_mask = False
if x > 0:
for mask in positive_mask:
if x >= mask[0] and x <= mask[1]:
is_in_mask = True
return max_amp
if not is_in_mask:
return 0.0
elif x < 0:
abs_x = abs(x)
for mask in negative_mask:
if abs_x >= mask[0] and abs_x <= mask[1]:
is_in_mask = True
return max_amp
if not is_in_mask:
return 0.0
return x
return fence_distortion
#
def make_jag_distortion(conf):
"""Generate a jag distortion function
In this jag-like shape function, the values in mask slots are
not changed, while the values not in mask slots are set to 0.
Use seperated masks for Positive and negetive amplitude.
Args:
conf: a dict {'mask_number': #int}
'mask_number': the slot number in mask.
Returns:
The jag function,which could be applied on
a float amplitude value
"""
mask_number = conf["mask_number"]
if mask_number <= 0:
positive_mask = default_mask
negative_mask = make_amp_mask([(-50, 0)])
else:
positive_mask = generate_amp_mask(mask_number)
negative_mask = generate_amp_mask(mask_number)
def jag_distortion(x):
is_in_mask = False
if x > 0:
for mask in positive_mask:
if x >= mask[0] and x <= mask[1]:
is_in_mask = True
return x
if not is_in_mask:
return 0.0
elif x < 0:
abs_x = abs(x)
for mask in negative_mask:
if abs_x >= mask[0] and abs_x <= mask[1]:
is_in_mask = True
return x
if not is_in_mask:
return 0.0
return x
return jag_distortion
# gaining 20db means amp = amp * 10
# gaining -20db means amp = amp / 10
def make_gain_db(conf):
"""Generate a db domain gain function
Args:
conf: a dict {'db': #float}
'db': the gaining value
Returns:
The db gain function, which could be applied on
a float amplitude value
"""
db = conf["db"]
def gain_db(x):
return min(0.997, x * pow(10, db / 20))
return gain_db
def distort(x, func, rate=0.8):
"""Distort a waveform in sample point level
Args:
x: the origin wavefrom
func: the distort function
rate: sample point-level distort probability
Returns:
the distorted waveform
"""
for i in range(0, x.shape[1]):
a = random.uniform(0, 1)
if a < rate:
x[0][i] = func(float(x[0][i]))
return x
def distort_chain(x, funcs, rate=0.8):
for i in range(0, x.shape[1]):
a = random.uniform(0, 1)
if a < rate:
for func in funcs:
x[0][i] = func(float(x[0][i]))
return x
# x is numpy
def distort_wav_conf(x, distort_type, distort_conf, rate=0.1):
if distort_type == "gain_db":
gain_db = make_gain_db(distort_conf)
x = distort(x, gain_db)
elif distort_type == "max_distortion":
max_distortion = make_max_distortion(distort_conf)
x = distort(x, max_distortion, rate=rate)
elif distort_type == "fence_distortion":
fence_distortion = make_fence_distortion(distort_conf)
x = distort(x, fence_distortion, rate=rate)
elif distort_type == "jag_distortion":
jag_distortion = make_jag_distortion(distort_conf)
x = distort(x, jag_distortion, rate=rate)
elif distort_type == "poly_distortion":
poly_distortion = make_poly_distortion(distort_conf)
x = distort(x, poly_distortion, rate=rate)
elif distort_type == "quad_distortion":
quad_distortion = make_quad_distortion()
x = distort(x, quad_distortion, rate=rate)
elif distort_type == "none_distortion":
pass
else:
print("unsupport type")
return x
def distort_wav_conf_and_save(distort_type, distort_conf, rate, wav_in, wav_out):
x, sr = torchaudio.load(wav_in)
x = x.detach().numpy()
out = distort_wav_conf(x, distort_type, distort_conf, rate)
torchaudio.save(wav_out, torch.from_numpy(out), sr)
if __name__ == "__main__":
distort_type = sys.argv[1]
wav_in = sys.argv[2]
wav_out = sys.argv[3]
conf = None
rate = 0.1
if distort_type == "new_jag_distortion":
conf = {"mask_number": 4}
elif distort_type == "new_fence_distortion":
conf = {"mask_number": 1, "max_db": -30}
elif distort_type == "poly_distortion":
conf = {"a": 4, "m": 2, "n": 2}
distort_wav_conf_and_save(distort_type, conf, rate, wav_in, wav_out)
|