File size: 12,247 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/jaywalnut310/vits/blob/main/models.py
import math
import torch
from torch import nn
from torch.nn import functional as F

from utils.util import *
from modules.flow.modules import *
from modules.base.base_module import *
from modules import monotonic_align
from modules.transformer.attentions import Encoder
from modules.duration_predictor.standard_duration_predictor import DurationPredictor
from modules.duration_predictor.stochastic_duration_predictor import (
    StochasticDurationPredictor,
)
from models.vocoders.gan.generator.hifigan import HiFiGAN_vits as Generator


class TextEncoder(nn.Module):
    def __init__(
        self,
        n_vocab,
        out_channels,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout,
    ):
        super().__init__()
        self.n_vocab = n_vocab
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout

        self.emb = nn.Embedding(n_vocab, hidden_channels)
        nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)

        self.encoder = Encoder(
            hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths):
        x = self.emb(x) * math.sqrt(self.hidden_channels)  # [b, t, h]
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

        x = self.encoder(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask

        m, logs = torch.split(stats, self.out_channels, dim=1)
        return x, m, logs, x_mask


class ResidualCouplingBlock(nn.Module):
    def __init__(
        self,
        channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        n_flows=4,
        gin_channels=0,
    ):
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = nn.ModuleList()
        for i in range(n_flows):
            self.flows.append(
                ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(Flip())

    def forward(self, x, x_mask, g=None, reverse=False):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow(x, x_mask, g=g, reverse=reverse)
        return x


class PosteriorEncoder(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        gin_channels=0,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            gin_channels=gin_channels,
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, g=None):
        x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask


class SynthesizerTrn(nn.Module):
    """
    Synthesizer for Training
    """

    def __init__(
        self,
        n_vocab,
        spec_channels,
        segment_size,
        inter_channels,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout,
        resblock,
        resblock_kernel_sizes,
        resblock_dilation_sizes,
        upsample_rates,
        upsample_initial_channel,
        upsample_kernel_sizes,
        n_speakers=0,
        gin_channels=0,
        use_sdp=True,
        **kwargs,
    ):
        super().__init__()
        self.n_vocab = n_vocab
        self.spec_channels = spec_channels
        self.inter_channels = inter_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.resblock = resblock
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes
        self.upsample_rates = upsample_rates
        self.upsample_initial_channel = upsample_initial_channel
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.segment_size = segment_size
        self.n_speakers = n_speakers
        self.gin_channels = gin_channels

        self.use_sdp = use_sdp

        self.enc_p = TextEncoder(
            n_vocab,
            inter_channels,
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            p_dropout,
        )
        self.dec = Generator(
            inter_channels,
            resblock,
            resblock_kernel_sizes,
            resblock_dilation_sizes,
            upsample_rates,
            upsample_initial_channel,
            upsample_kernel_sizes,
            gin_channels=gin_channels,
        )
        self.enc_q = PosteriorEncoder(
            spec_channels,
            inter_channels,
            hidden_channels,
            5,
            1,
            16,
            gin_channels=gin_channels,
        )
        self.flow = ResidualCouplingBlock(
            inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
        )

        if use_sdp:
            self.dp = StochasticDurationPredictor(
                hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
            )
        else:
            self.dp = DurationPredictor(
                hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
            )

        if n_speakers >= 1:
            self.emb_g = nn.Embedding(n_speakers, gin_channels)
            

    def forward(self, data):
        x = data["phone_seq"]
        x_lengths = data["phone_len"]
        y = data["linear"]
        y_lengths = data["target_len"]

        x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
        
        # print('self.n_speakers: ', self.n_speakers)
        if self.n_speakers > 0:
            g = self.emb_g(data["spk_id"].squeeze(-1)).unsqueeze(-1)  # [b, h, 1]
            # print('g.shape: ', g.shape)
        else:
            g = None
            # print('g is None')

        z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
        z_p = self.flow(z, y_mask, g=g)

        with torch.no_grad():
            # negative cross-entropy
            s_p_sq_r = torch.exp(-2 * logs_p)  # [b, d, t]
            neg_cent1 = torch.sum(
                -0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
            )  # [b, 1, t_s]
            neg_cent2 = torch.matmul(
                -0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
            )  # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
            neg_cent3 = torch.matmul(
                z_p.transpose(1, 2), (m_p * s_p_sq_r)
            )  # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
            neg_cent4 = torch.sum(
                -0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
            )  # [b, 1, t_s]
            neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4

            attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
            attn = (
                monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
                .unsqueeze(1)
                .detach()
            )

        w = attn.sum(2)
        if self.use_sdp:
            l_length = self.dp(x, x_mask, w, g=g)
            l_length = l_length / torch.sum(x_mask)
        else:
            logw_ = torch.log(w + 1e-6) * x_mask
            logw = self.dp(x, x_mask, g=g)
            l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask)

        # expand prior
        m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
        logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)

        z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
        o = self.dec(z_slice, g=g)
        outputs = {
            "y_hat": o,
            "l_length": l_length,
            "attn": attn,
            "ids_slice": ids_slice,
            "x_mask": x_mask,
            "z_mask": y_mask,
            "z": z,
            "z_p": z_p,
            "m_p": m_p,
            "logs_p": logs_p,
            "m_q": m_q,
            "logs_q": logs_q,
        }
        return outputs

    def infer(
        self,
        x,
        x_lengths,
        sid=None,
        noise_scale=1,
        length_scale=1,
        noise_scale_w=1.0,
        max_len=None,
    ):
        x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
        if self.n_speakers > 0:
            sid = sid.squeeze(-1)
            g = self.emb_g(sid).unsqueeze(-1)  # [b, h, 1]
        else:
            g = None
        
        print('g.shape: ', g.shape)

        if self.use_sdp:
            logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
        else:
            logw = self.dp(x, x_mask, g=g)
        w = torch.exp(logw) * x_mask * length_scale
        w_ceil = torch.ceil(w)
        y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
        y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
        attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
        attn = generate_path(w_ceil, attn_mask)

        m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
            1, 2
        )  # [b, t', t], [b, t, d] -> [b, d, t']
        logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
            1, 2
        )  # [b, t', t], [b, t, d] -> [b, d, t']

        z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
        z = self.flow(z_p, y_mask, g=g, reverse=True)
        o = self.dec((z * y_mask)[:, :, :max_len], g=g)

        outputs = {
            "y_hat": o,
            "attn": attn,
            "mask": y_mask,
            "z": z,
            "z_p": z_p,
            "m_p": m_p,
            "logs_p": logs_p,
        }

        return outputs

    def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
        assert self.n_speakers > 0, "n_speakers have to be larger than 0."
        g_src = self.emb_g(sid_src).unsqueeze(-1)
        g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
        z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
        z_p = self.flow(z, y_mask, g=g_src)
        z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
        o_hat = self.dec(z_hat * y_mask, g=g_tgt)
        return o_hat, y_mask, (z, z_p, z_hat)