Spaces:
Sleeping
Sleeping
# Transformer for Singing Voice Conversion | |
This is an implementation of **vanilla transformer encoder**/**conformer** as acoustic model for singing voice conversion. | |
There are four stages in total: | |
1. Data preparation | |
2. Features extraction | |
3. Training | |
4. Inference/conversion | |
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path: | |
> ```bash | |
> cd Amphion | |
> ``` | |
## 1. Data Preparation | |
### Dataset Download | |
By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed [here](../../datasets/README.md). | |
### Configuration | |
Specify the dataset paths in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets. | |
```json | |
"dataset": [ | |
"m4singer", | |
"opencpop", | |
"opensinger", | |
"svcc", | |
"vctk" | |
], | |
"dataset_path": { | |
// TODO: Fill in your dataset path | |
"m4singer": "[M4Singer dataset path]", | |
"opencpop": "[Opencpop dataset path]", | |
"opensinger": "[OpenSinger dataset path]", | |
"svcc": "[SVCC dataset path]", | |
"vctk": "[VCTK dataset path]" | |
}, | |
``` | |
## 2. Features Extraction | |
### Content-based Pretrained Models Download | |
By default, we utilize the Whisper and ContentVec to extract content features. How to download them is detailed [here](../../../pretrained/README.md). | |
### Configuration | |
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`: | |
```json | |
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc" | |
"log_dir": "ckpts/svc", | |
"preprocess": { | |
// TODO: Fill in the output data path. The default value is "Amphion/data" | |
"processed_dir": "data", | |
... | |
}, | |
``` | |
### Run | |
Run the `run.sh` as the preproces stage (set `--stage 1`). | |
```bash | |
sh egs/svc/TransformerSVC/run.sh --stage 1 | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`. | |
## 3. Training | |
### Configuration | |
Specify the detailed configuration for transformer block in `exp_config.json`. For key `type`, `conformer` and `transformer` are supported: | |
```json | |
"model": { | |
... | |
"transformer":{ | |
// 'conformer' or 'transformer' | |
"type": "conformer", | |
"input_dim": 384, | |
"output_dim": 100, | |
"n_heads": 2, | |
"n_layers": 6, | |
"filter_channels":512, | |
"dropout":0.1, | |
} | |
} | |
``` | |
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines. | |
```json | |
"train": { | |
"batch_size": 32, | |
... | |
"adamw": { | |
"lr": 2.0e-4 | |
}, | |
... | |
} | |
``` | |
### Run | |
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/svc/[YourExptName]`. | |
```bash | |
sh egs/svc/TransformerSVC/run.sh --stage 2 --name [YourExptName] | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`. | |
## 4. Inference/Conversion | |
### Pretrained Vocoder Download | |
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The benifits of fine-tuning has been investigated in our paper (see this [demo page](https://www.zhangxueyao.com/data/MultipleContentsSVC/vocoder.html)). The final pretrained singing voice vocoder is released [here](../../../pretrained/README.md#amphion-singing-bigvgan) (called `Amphion Singing BigVGAN`). | |
### Run | |
For inference/conversion, you need to specify the following configurations when running `run.sh`: | |
| Parameters | Description | Example | | |
| --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | |
| `--infer_expt_dir` | The experimental directory which contains `checkpoint` | `Amphion/ckpts/svc/[YourExptName]` | | |
| `--infer_output_dir` | The output directory to save inferred audios. | `Amphion/ckpts/svc/[YourExptName]/result` | | |
| `--infer_source_file` or `--infer_source_audio_dir` | The inference source (can be a json file or a dir). | The `infer_source_file` could be `Amphion/data/[YourDataset]/test.json`, and the `infer_source_audio_dir` is a folder which includes several audio files (*.wav, *.mp3 or *.flac). | | |
| `--infer_target_speaker` | The target speaker you want to convert into. You can refer to `Amphion/ckpts/svc/[YourExptName]/singers.json` to choose a trained speaker. | For opencpop dataset, the speaker name would be `opencpop_female1`. | | |
| `--infer_key_shift` | How many semitones you want to transpose. | `"autoshfit"` (by default), `3`, `-3`, etc. | | |
For example, if you want to make `opencpop_female1` sing the songs in the `[Your Audios Folder]`, just run: | |
```bash | |
cd Amphion | |
sh egs/svc/TransformerSVC/run.sh --stage 3 --gpu "0" \ | |
--infer_expt_dir Amphion/ckpts/svc/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/svc/[YourExptName]/result \ | |
--infer_source_audio_dir [Your Audios Folder] \ | |
--infer_target_speaker "opencpop_female1" \ | |
--infer_key_shift "autoshift" | |
``` | |
## Citations | |
```bibtex | |
@inproceedings{transformer, | |
author = {Ashish Vaswani and | |
Noam Shazeer and | |
Niki Parmar and | |
Jakob Uszkoreit and | |
Llion Jones and | |
Aidan N. Gomez and | |
Lukasz Kaiser and | |
Illia Polosukhin}, | |
title = {Attention is All you Need}, | |
booktitle = {{NIPS}}, | |
pages = {5998--6008}, | |
year = {2017} | |
} | |
``` |