Spaces:
Sleeping
Sleeping
File size: 7,442 Bytes
9893813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Transformer for Singing Voice Conversion
This is an implementation of **vanilla transformer encoder**/**conformer** as acoustic model for singing voice conversion.
There are four stages in total:
1. Data preparation
2. Features extraction
3. Training
4. Inference/conversion
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
### Dataset Download
By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed [here](../../datasets/README.md).
### Configuration
Specify the dataset paths in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"m4singer",
"opencpop",
"opensinger",
"svcc",
"vctk"
],
"dataset_path": {
// TODO: Fill in your dataset path
"m4singer": "[M4Singer dataset path]",
"opencpop": "[Opencpop dataset path]",
"opensinger": "[OpenSinger dataset path]",
"svcc": "[SVCC dataset path]",
"vctk": "[VCTK dataset path]"
},
```
## 2. Features Extraction
### Content-based Pretrained Models Download
By default, we utilize the Whisper and ContentVec to extract content features. How to download them is detailed [here](../../../pretrained/README.md).
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
"log_dir": "ckpts/svc",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/svc/TransformerSVC/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
Specify the detailed configuration for transformer block in `exp_config.json`. For key `type`, `conformer` and `transformer` are supported:
```json
"model": {
...
"transformer":{
// 'conformer' or 'transformer'
"type": "conformer",
"input_dim": 384,
"output_dim": 100,
"n_heads": 2,
"n_layers": 6,
"filter_channels":512,
"dropout":0.1,
}
}
```
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
...
"adamw": {
"lr": 2.0e-4
},
...
}
```
### Run
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/svc/[YourExptName]`.
```bash
sh egs/svc/TransformerSVC/run.sh --stage 2 --name [YourExptName]
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
## 4. Inference/Conversion
### Pretrained Vocoder Download
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The benifits of fine-tuning has been investigated in our paper (see this [demo page](https://www.zhangxueyao.com/data/MultipleContentsSVC/vocoder.html)). The final pretrained singing voice vocoder is released [here](../../../pretrained/README.md#amphion-singing-bigvgan) (called `Amphion Singing BigVGAN`).
### Run
For inference/conversion, you need to specify the following configurations when running `run.sh`:
| Parameters | Description | Example |
| --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--infer_expt_dir` | The experimental directory which contains `checkpoint` | `Amphion/ckpts/svc/[YourExptName]` |
| `--infer_output_dir` | The output directory to save inferred audios. | `Amphion/ckpts/svc/[YourExptName]/result` |
| `--infer_source_file` or `--infer_source_audio_dir` | The inference source (can be a json file or a dir). | The `infer_source_file` could be `Amphion/data/[YourDataset]/test.json`, and the `infer_source_audio_dir` is a folder which includes several audio files (*.wav, *.mp3 or *.flac). |
| `--infer_target_speaker` | The target speaker you want to convert into. You can refer to `Amphion/ckpts/svc/[YourExptName]/singers.json` to choose a trained speaker. | For opencpop dataset, the speaker name would be `opencpop_female1`. |
| `--infer_key_shift` | How many semitones you want to transpose. | `"autoshfit"` (by default), `3`, `-3`, etc. |
For example, if you want to make `opencpop_female1` sing the songs in the `[Your Audios Folder]`, just run:
```bash
cd Amphion
sh egs/svc/TransformerSVC/run.sh --stage 3 --gpu "0" \
--infer_expt_dir Amphion/ckpts/svc/[YourExptName] \
--infer_output_dir Amphion/ckpts/svc/[YourExptName]/result \
--infer_source_audio_dir [Your Audios Folder] \
--infer_target_speaker "opencpop_female1" \
--infer_key_shift "autoshift"
```
## Citations
```bibtex
@inproceedings{transformer,
author = {Ashish Vaswani and
Noam Shazeer and
Niki Parmar and
Jakob Uszkoreit and
Llion Jones and
Aidan N. Gomez and
Lukasz Kaiser and
Illia Polosukhin},
title = {Attention is All you Need},
booktitle = {{NIPS}},
pages = {5998--6008},
year = {2017}
}
``` |