File size: 5,038 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Decoder self-attention layer definition."""
from typing import Optional, Tuple

import torch
from torch import nn


class DecoderLayer(nn.Module):
    """Single decoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
        src_attn (torch.nn.Module): Inter-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
            If `None` is passed, Inter-attention is not used, such as
            CIF, GPT, and other decoder only model.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool):
            True: use layer_norm before each sub-block.
            False: to use layer_norm after each sub-block.
    """

    def __init__(
        self,
        size: int,
        self_attn: nn.Module,
        src_attn: Optional[nn.Module],
        feed_forward: nn.Module,
        dropout_rate: float,
        normalize_before: bool = True,
    ):
        """Construct an DecoderLayer object."""
        super().__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.norm1 = nn.LayerNorm(size, eps=1e-5)
        self.norm2 = nn.LayerNorm(size, eps=1e-5)
        self.norm3 = nn.LayerNorm(size, eps=1e-5)
        self.dropout = nn.Dropout(dropout_rate)
        self.normalize_before = normalize_before

    def forward(
        self,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        cache: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute decoded features.

        Args:
            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
            tgt_mask (torch.Tensor): Mask for input tensor
                (#batch, maxlen_out).
            memory (torch.Tensor): Encoded memory
                (#batch, maxlen_in, size).
            memory_mask (torch.Tensor): Encoded memory mask
                (#batch, maxlen_in).
            cache (torch.Tensor): cached tensors.
                (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, maxlen_out, size).
            torch.Tensor: Mask for output tensor (#batch, maxlen_out).
            torch.Tensor: Encoded memory (#batch, maxlen_in, size).
            torch.Tensor: Encoded memory mask (#batch, maxlen_in).

        """
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)

        if cache is None:
            tgt_q = tgt
            tgt_q_mask = tgt_mask
        else:
            # compute only the last frame query keeping dim: max_time_out -> 1
            assert cache.shape == (
                tgt.shape[0],
                tgt.shape[1] - 1,
                self.size,
            ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
            tgt_q = tgt[:, -1:, :]
            residual = residual[:, -1:, :]
            tgt_q_mask = tgt_mask[:, -1:, :]

        x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
        if not self.normalize_before:
            x = self.norm1(x)

        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm2(x)
            x = residual + self.dropout(
                self.src_attn(x, memory, memory, memory_mask)[0]
            )
            if not self.normalize_before:
                x = self.norm2(x)

        residual = x
        if self.normalize_before:
            x = self.norm3(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm3(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, tgt_mask, memory, memory_mask