File size: 8,642 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch
import torch.nn.functional as F

from torch.distributions import Normal


def log_sum_exp(x):
    """numerically stable log_sum_exp implementation that prevents overflow"""
    # TF ordering
    axis = len(x.size()) - 1
    m, _ = torch.max(x, dim=axis)
    m2, _ = torch.max(x, dim=axis, keepdim=True)
    return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis))


def discretized_mix_logistic_loss(
    y_hat, y, num_classes=256, log_scale_min=-7.0, reduce=True
):
    """Discretized mixture of logistic distributions loss

    Note that it is assumed that input is scaled to [-1, 1].

    Args:
        y_hat (Tensor): Predicted output (B x C x T)
        y (Tensor): Target (B x T x 1).
        num_classes (int): Number of classes
        log_scale_min (float): Log scale minimum value
        reduce (bool): If True, the losses are averaged or summed for each
          minibatch.

    Returns
        Tensor: loss
    """
    assert y_hat.dim() == 3
    assert y_hat.size(1) % 3 == 0
    nr_mix = y_hat.size(1) // 3

    # (B x T x C)
    y_hat = y_hat.transpose(1, 2)

    # unpack parameters. (B, T, num_mixtures) x 3
    logit_probs = y_hat[:, :, :nr_mix]
    means = y_hat[:, :, nr_mix : 2 * nr_mix]
    log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min)

    # B x T x 1 -> B x T x num_mixtures
    y = y.expand_as(means)

    centered_y = y - means
    inv_stdv = torch.exp(-log_scales)
    plus_in = inv_stdv * (centered_y + 1.0 / (num_classes - 1))
    cdf_plus = torch.sigmoid(plus_in)
    min_in = inv_stdv * (centered_y - 1.0 / (num_classes - 1))
    cdf_min = torch.sigmoid(min_in)

    # log probability for edge case of 0 (before scaling)
    # equivalent: torch.log(torch.sigmoid(plus_in))
    log_cdf_plus = plus_in - F.softplus(plus_in)

    # log probability for edge case of 255 (before scaling)
    # equivalent: (1 - torch.sigmoid(min_in)).log()
    log_one_minus_cdf_min = -F.softplus(min_in)

    # probability for all other cases
    cdf_delta = cdf_plus - cdf_min

    mid_in = inv_stdv * centered_y
    # log probability in the center of the bin, to be used in extreme cases
    # (not actually used in our code)
    log_pdf_mid = mid_in - log_scales - 2.0 * F.softplus(mid_in)

    # tf equivalent
    """
    log_probs = tf.where(x < -0.999, log_cdf_plus,
                         tf.where(x > 0.999, log_one_minus_cdf_min,
                                  tf.where(cdf_delta > 1e-5,
                                           tf.log(tf.maximum(cdf_delta, 1e-12)),
                                           log_pdf_mid - np.log(127.5))))
    """
    # TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value
    # for num_classes=65536 case? 1e-7? not sure..
    inner_inner_cond = (cdf_delta > 1e-5).float()

    inner_inner_out = inner_inner_cond * torch.log(
        torch.clamp(cdf_delta, min=1e-12)
    ) + (1.0 - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
    inner_cond = (y > 0.999).float()
    inner_out = (
        inner_cond * log_one_minus_cdf_min + (1.0 - inner_cond) * inner_inner_out
    )
    cond = (y < -0.999).float()
    log_probs = cond * log_cdf_plus + (1.0 - cond) * inner_out

    log_probs = log_probs + F.log_softmax(logit_probs, -1)

    if reduce:
        return -torch.sum(log_sum_exp(log_probs))
    else:
        return -log_sum_exp(log_probs).unsqueeze(-1)


def to_one_hot(tensor, n, fill_with=1.0):
    # we perform one hot encore with respect to the last axis
    one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_()
    if tensor.is_cuda:
        one_hot = one_hot.cuda()
    one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with)
    return one_hot


def sample_from_discretized_mix_logistic(y, log_scale_min=-7.0, clamp_log_scale=False):
    """
    Sample from discretized mixture of logistic distributions

    Args:
        y (Tensor): B x C x T
        log_scale_min (float): Log scale minimum value

    Returns:
        Tensor: sample in range of [-1, 1].
    """
    assert y.size(1) % 3 == 0
    nr_mix = y.size(1) // 3

    # B x T x C
    y = y.transpose(1, 2)
    logit_probs = y[:, :, :nr_mix]

    # sample mixture indicator from softmax
    temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
    temp = logit_probs.data - torch.log(-torch.log(temp))
    _, argmax = temp.max(dim=-1)

    # (B, T) -> (B, T, nr_mix)
    one_hot = to_one_hot(argmax, nr_mix)
    # select logistic parameters
    means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1)
    log_scales = torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1)
    if clamp_log_scale:
        log_scales = torch.clamp(log_scales, min=log_scale_min)
    # sample from logistic & clip to interval
    # we don't actually round to the nearest 8bit value when sampling
    u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5)
    x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1.0 - u))

    x = torch.clamp(torch.clamp(x, min=-1.0), max=1.0)

    return x


# we can easily define discretized version of the gaussian loss, however,
# use continuous version as same as the https://clarinet-demo.github.io/
def mix_gaussian_loss(y_hat, y, log_scale_min=-7.0, reduce=True):
    """Mixture of continuous gaussian distributions loss

    Note that it is assumed that input is scaled to [-1, 1].

    Args:
        y_hat (Tensor): Predicted output (B x C x T)
        y (Tensor): Target (B x T x 1).
        log_scale_min (float): Log scale minimum value
        reduce (bool): If True, the losses are averaged or summed for each
          minibatch.
    Returns
        Tensor: loss
    """
    assert y_hat.dim() == 3
    C = y_hat.size(1)
    if C == 2:
        nr_mix = 1
    else:
        assert y_hat.size(1) % 3 == 0
        nr_mix = y_hat.size(1) // 3

    # (B x T x C)
    y_hat = y_hat.transpose(1, 2)

    # unpack parameters.
    if C == 2:
        # special case for C == 2, just for compatibility
        logit_probs = None
        means = y_hat[:, :, 0:1]
        log_scales = torch.clamp(y_hat[:, :, 1:2], min=log_scale_min)
    else:
        #  (B, T, num_mixtures) x 3
        logit_probs = y_hat[:, :, :nr_mix]
        means = y_hat[:, :, nr_mix : 2 * nr_mix]
        log_scales = torch.clamp(
            y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min
        )

    # B x T x 1 -> B x T x num_mixtures
    y = y.expand_as(means)

    centered_y = y - means
    dist = Normal(loc=0.0, scale=torch.exp(log_scales))
    # do we need to add a trick to avoid log(0)?
    log_probs = dist.log_prob(centered_y)

    if nr_mix > 1:
        log_probs = log_probs + F.log_softmax(logit_probs, -1)

    if reduce:
        if nr_mix == 1:
            return -torch.sum(log_probs)
        else:
            return -torch.sum(log_sum_exp(log_probs))
    else:
        if nr_mix == 1:
            return -log_probs
        else:
            return -log_sum_exp(log_probs).unsqueeze(-1)


def sample_from_mix_gaussian(y, log_scale_min=-7.0):
    """
    Sample from (discretized) mixture of gaussian distributions
    Args:
        y (Tensor): B x C x T
        log_scale_min (float): Log scale minimum value
    Returns:
        Tensor: sample in range of [-1, 1].
    """
    C = y.size(1)
    if C == 2:
        nr_mix = 1
    else:
        assert y.size(1) % 3 == 0
        nr_mix = y.size(1) // 3

    # B x T x C
    y = y.transpose(1, 2)

    if C == 2:
        logit_probs = None
    else:
        logit_probs = y[:, :, :nr_mix]

    if nr_mix > 1:
        # sample mixture indicator from softmax
        temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
        temp = logit_probs.data - torch.log(-torch.log(temp))
        _, argmax = temp.max(dim=-1)

        # (B, T) -> (B, T, nr_mix)
        one_hot = to_one_hot(argmax, nr_mix)

        # Select means and log scales
        means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1)
        log_scales = torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1)
    else:
        if C == 2:
            means, log_scales = y[:, :, 0], y[:, :, 1]
        elif C == 3:
            means, log_scales = y[:, :, 1], y[:, :, 2]
        else:
            assert False, "shouldn't happen"

    scales = torch.exp(log_scales)
    dist = Normal(loc=means, scale=scales)
    x = dist.sample()

    x = torch.clamp(x, min=-1.0, max=1.0)
    return x