File size: 15,473 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ExponentialLR

from tqdm import tqdm

from utils.util import *
from utils.mel import mel_spectrogram_torch
from models.tts.base import TTSTrainer
from models.tts.vits.vits import SynthesizerTrn
from models.tts.vits.vits_dataset import VITSDataset, VITSCollator
from models.vocoders.gan.discriminator.mpd import (
    MultiPeriodDiscriminator_vits as MultiPeriodDiscriminator,
)


class VITSTrainer(TTSTrainer):
    def __init__(self, args, cfg):
        TTSTrainer.__init__(self, args, cfg)

        if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training:
            if cfg.model.n_speakers == 0:
                cfg.model.n_speaker = len(self.speakers)

    def _build_model(self):
        net_g = SynthesizerTrn(
            self.cfg.model.text_token_num,
            self.cfg.preprocess.n_fft // 2 + 1,
            self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
            **self.cfg.model,
        )
        net_d = MultiPeriodDiscriminator(self.cfg.model.use_spectral_norm)
        model = {"generator": net_g, "discriminator": net_d}

        return model

    def _build_dataset(self):
        return VITSDataset, VITSCollator

    def _build_optimizer(self):
        optimizer_g = torch.optim.AdamW(
            self.model["generator"].parameters(),
            self.cfg.train.learning_rate,
            betas=self.cfg.train.AdamW.betas,
            eps=self.cfg.train.AdamW.eps,
        )
        optimizer_d = torch.optim.AdamW(
            self.model["discriminator"].parameters(),
            self.cfg.train.learning_rate,
            betas=self.cfg.train.AdamW.betas,
            eps=self.cfg.train.AdamW.eps,
        )
        optimizer = {"optimizer_g": optimizer_g, "optimizer_d": optimizer_d}

        return optimizer

    def _build_scheduler(self):
        scheduler_g = ExponentialLR(
            self.optimizer["optimizer_g"],
            gamma=self.cfg.train.lr_decay,
            last_epoch=self.epoch - 1,
        )
        scheduler_d = ExponentialLR(
            self.optimizer["optimizer_d"],
            gamma=self.cfg.train.lr_decay,
            last_epoch=self.epoch - 1,
        )

        scheduler = {"scheduler_g": scheduler_g, "scheduler_d": scheduler_d}
        return scheduler

    def _build_criterion(self):
        class GeneratorLoss(nn.Module):
            def __init__(self, cfg):
                super(GeneratorLoss, self).__init__()
                self.cfg = cfg
                self.l1_loss = nn.L1Loss()

            def generator_loss(self, disc_outputs):
                loss = 0
                gen_losses = []
                for dg in disc_outputs:
                    dg = dg.float()
                    l = torch.mean((1 - dg) ** 2)
                    gen_losses.append(l)
                    loss += l

                return loss, gen_losses

            def feature_loss(self, fmap_r, fmap_g):
                loss = 0
                for dr, dg in zip(fmap_r, fmap_g):
                    for rl, gl in zip(dr, dg):
                        rl = rl.float().detach()
                        gl = gl.float()
                        loss += torch.mean(torch.abs(rl - gl))

                return loss * 2

            def kl_loss(self, z_p, logs_q, m_p, logs_p, z_mask):
                """
                z_p, logs_q: [b, h, t_t]
                m_p, logs_p: [b, h, t_t]
                """
                z_p = z_p.float()
                logs_q = logs_q.float()
                m_p = m_p.float()
                logs_p = logs_p.float()
                z_mask = z_mask.float()

                kl = logs_p - logs_q - 0.5
                kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
                kl = torch.sum(kl * z_mask)
                l = kl / torch.sum(z_mask)
                return l

            def forward(
                self,
                outputs_g,
                outputs_d,
                y_mel,
                y_hat_mel,
            ):
                loss_g = {}

                # duration loss
                loss_dur = torch.sum(outputs_g["l_length"].float())
                loss_g["loss_dur"] = loss_dur

                # mel loss
                loss_mel = self.l1_loss(y_mel, y_hat_mel) * self.cfg.train.c_mel
                loss_g["loss_mel"] = loss_mel

                # kl loss
                loss_kl = (
                    self.kl_loss(
                        outputs_g["z_p"],
                        outputs_g["logs_q"],
                        outputs_g["m_p"],
                        outputs_g["logs_p"],
                        outputs_g["z_mask"],
                    )
                    * self.cfg.train.c_kl
                )
                loss_g["loss_kl"] = loss_kl

                # feature loss
                loss_fm = self.feature_loss(outputs_d["fmap_rs"], outputs_d["fmap_gs"])
                loss_g["loss_fm"] = loss_fm

                # gan loss
                loss_gen, losses_gen = self.generator_loss(outputs_d["y_d_hat_g"])
                loss_g["loss_gen"] = loss_gen
                loss_g["loss_gen_all"] = (
                    loss_dur + loss_mel + loss_kl + loss_fm + loss_gen
                )

                return loss_g

        class DiscriminatorLoss(nn.Module):
            def __init__(self, cfg):
                super(DiscriminatorLoss, self).__init__()
                self.cfg = cfg
                self.l1Loss = torch.nn.L1Loss(reduction="mean")

            def __call__(self, disc_real_outputs, disc_generated_outputs):
                loss_d = {}

                loss = 0
                r_losses = []
                g_losses = []
                for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
                    dr = dr.float()
                    dg = dg.float()
                    r_loss = torch.mean((1 - dr) ** 2)
                    g_loss = torch.mean(dg**2)
                    loss += r_loss + g_loss
                    r_losses.append(r_loss.item())
                    g_losses.append(g_loss.item())

                loss_d["loss_disc_all"] = loss

                return loss_d

        criterion = {
            "generator": GeneratorLoss(self.cfg),
            "discriminator": DiscriminatorLoss(self.cfg),
        }
        return criterion

    def write_summary(
        self,
        losses,
        stats,
        images={},
        audios={},
        audio_sampling_rate=24000,
        tag="train",
    ):
        for key, value in losses.items():
            self.sw.add_scalar(tag + "/" + key, value, self.step)
        self.sw.add_scalar(
            "learning_rate",
            self.optimizer["optimizer_g"].param_groups[0]["lr"],
            self.step,
        )

        if len(images) != 0:
            for key, value in images.items():
                self.sw.add_image(key, value, self.global_step, batchformats="HWC")
        if len(audios) != 0:
            for key, value in audios.items():
                self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)

    def write_valid_summary(
        self, losses, stats, images={}, audios={}, audio_sampling_rate=24000, tag="val"
    ):
        for key, value in losses.items():
            self.sw.add_scalar(tag + "/" + key, value, self.step)

        if len(images) != 0:
            for key, value in images.items():
                self.sw.add_image(key, value, self.global_step, batchformats="HWC")
        if len(audios) != 0:
            for key, value in audios.items():
                self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)

    def get_state_dict(self):
        state_dict = {
            "generator": self.model["generator"].state_dict(),
            "discriminator": self.model["discriminator"].state_dict(),
            "optimizer_g": self.optimizer["optimizer_g"].state_dict(),
            "optimizer_d": self.optimizer["optimizer_d"].state_dict(),
            "scheduler_g": self.scheduler["scheduler_g"].state_dict(),
            "scheduler_d": self.scheduler["scheduler_d"].state_dict(),
            "step": self.step,
            "epoch": self.epoch,
            "batch_size": self.cfg.train.batch_size,
        }
        return state_dict

    def load_model(self, checkpoint):
        self.step = checkpoint["step"]
        self.epoch = checkpoint["epoch"]
        self.model["generator"].load_state_dict(checkpoint["generator"])
        self.model["discriminator"].load_state_dict(checkpoint["discriminator"])
        self.optimizer["optimizer_g"].load_state_dict(checkpoint["optimizer_g"])
        self.optimizer["optimizer_d"].load_state_dict(checkpoint["optimizer_d"])
        self.scheduler["scheduler_g"].load_state_dict(checkpoint["scheduler_g"])
        self.scheduler["scheduler_d"].load_state_dict(checkpoint["scheduler_d"])

    @torch.inference_mode()
    def _valid_step(self, batch):
        r"""Testing forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_test_epoch`` for usage.
        """

        valid_losses = {}
        total_loss = 0
        valid_stats = {}

        batch["linear"] = batch["linear"].transpose(2, 1)  # [b, d, t]
        batch["mel"] = batch["mel"].transpose(2, 1)  # [b, d, t]
        batch["audio"] = batch["audio"].unsqueeze(1)  # [b, d, t]

        #  Discriminator
        # Generator output
        outputs_g = self.model["generator"](batch)

        y_mel = slice_segments(
            batch["mel"],
            outputs_g["ids_slice"],
            self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
        )
        y_hat_mel = mel_spectrogram_torch(
            outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
        )
        y = slice_segments(
            batch["audio"],
            outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
            self.cfg.preprocess.segment_size,
        )

        # Discriminator output
        outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
        ##  Discriminator loss
        loss_d = self.criterion["discriminator"](
            outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
        )
        valid_losses.update(loss_d)

        ##  Generator
        outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
        loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
        valid_losses.update(loss_g)

        for item in valid_losses:
            valid_losses[item] = valid_losses[item].item()

        total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]

        return (
            total_loss.item(),
            valid_losses,
            valid_stats,
        )

    def _train_step(self, batch):
        r"""Forward step for training and inference. This function is called
        in ``_train_step`` & ``_test_step`` function.
        """

        train_losses = {}
        total_loss = 0
        training_stats = {}

        batch["linear"] = batch["linear"].transpose(2, 1)  # [b, d, t]
        batch["mel"] = batch["mel"].transpose(2, 1)  # [b, d, t]
        batch["audio"] = batch["audio"].unsqueeze(1)  # [b, d, t]

        # Train Discriminator
        # Generator output
        outputs_g = self.model["generator"](batch)

        y_mel = slice_segments(
            batch["mel"],
            outputs_g["ids_slice"],
            self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
        )
        y_hat_mel = mel_spectrogram_torch(
            outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
        )
        y = slice_segments(
            batch["audio"],
            outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
            self.cfg.preprocess.segment_size,
        )

        # Discriminator output
        outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
        ##  Discriminator loss
        loss_d = self.criterion["discriminator"](
            outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
        )
        train_losses.update(loss_d)

        # BP and Grad Updated
        self.optimizer["optimizer_d"].zero_grad()
        self.accelerator.backward(loss_d["loss_disc_all"])
        self.optimizer["optimizer_d"].step()

        ## Train Generator
        outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
        loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
        train_losses.update(loss_g)

        # BP and Grad Updated
        self.optimizer["optimizer_g"].zero_grad()
        self.accelerator.backward(loss_g["loss_gen_all"])
        self.optimizer["optimizer_g"].step()

        for item in train_losses:
            train_losses[item] = train_losses[item].item()

        total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]

        return (
            total_loss.item(),
            train_losses,
            training_stats,
        )

    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        epoch_sum_loss: float = 0.0
        epoch_losses: dict = {}
        epoch_step: int = 0
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            with self.accelerator.accumulate(self.model):
                total_loss, train_losses, training_stats = self._train_step(batch)
            self.batch_count += 1

            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                epoch_sum_loss += total_loss
                for key, value in train_losses.items():
                    if key not in epoch_losses.keys():
                        epoch_losses[key] = value
                    else:
                        epoch_losses[key] += value

                self.accelerator.log(
                    {
                        "Step/Generator Loss": train_losses["loss_gen_all"],
                        "Step/Discriminator Loss": train_losses["loss_disc_all"],
                        "Step/Generator Learning Rate": self.optimizer[
                            "optimizer_d"
                        ].param_groups[0]["lr"],
                        "Step/Discriminator Learning Rate": self.optimizer[
                            "optimizer_g"
                        ].param_groups[0]["lr"],
                    },
                    step=self.step,
                )
                self.step += 1
                epoch_step += 1

        self.accelerator.wait_for_everyone()

        epoch_sum_loss = (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )

        return epoch_sum_loss, epoch_losses