Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,270 Bytes
5db4ee9 0a63b23 719b808 88a8fb2 719b808 ca6274c e7b9619 0a63b23 4a81ee5 719b808 c24b00b 719b808 4a81ee5 719b808 4a81ee5 719b808 4a81ee5 0aed679 4a81ee5 0aed679 4a81ee5 0aed679 4a81ee5 0aed679 4a81ee5 0aed679 4a81ee5 719b808 4a81ee5 0aed679 88a8fb2 0aed679 34146f0 0aed679 34146f0 0aed679 34146f0 0aed679 340d6c0 0aed679 4a81ee5 0aed679 88a8fb2 34146f0 4a81ee5 88a8fb2 340d6c0 18b7b66 4a81ee5 88a8fb2 340d6c0 4a81ee5 ca6274c 0aed679 ca6274c 88a8fb2 340d6c0 ca6274c 88a8fb2 18c21b7 88a8fb2 18c21b7 88a8fb2 18c21b7 88a8fb2 18c21b7 88a8fb2 18c21b7 88a8fb2 ca6274c 88a8fb2 ca6274c 88a8fb2 719b808 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import spaces
import gradio as gr
import os
import torch
from model import Wav2Vec2BERT_Llama # 自定义模型模块
import dataset # 自定义数据集模块
from huggingface_hub import hf_hub_download
@spaces.GPU
def dummy(): # just a dummy
pass
# 修改 load_model 函数
def load_model():
checkpoint_path = hf_hub_download(
repo_id="amphion/deepfake_detection",
filename="checkpoints_wav2vec2bert_ft_llama_labels_ASVspoof2019_RandomPrompts_6/model_checkpoint.pth",
repo_type="model"
)
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
return checkpoint_path
checkpoint_path = load_model()
# 将 detect 函数移到 GPU 装饰器下
@spaces.GPU
def detect_on_gpu(dataset):
"""在 GPU 上进行音频伪造检测"""
print("\n=== 开始音频检测 ===")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
print("正在初始化模型...")
model = Wav2Vec2BERT_Llama().to(device)
print(f"正在加载模型权重: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=device)
model_state_dict = checkpoint['model_state_dict']
threshold = 0.9996
print(f"检测阈值设置为: {threshold}")
# 处理模型状态字典的 key
if hasattr(model, 'module') and not any(key.startswith('module.') for key in model_state_dict.keys()):
print("添加 'module.' 前缀到状态字典的 key")
model_state_dict = {'module.' + key: value for key, value in model_state_dict.items()}
elif not hasattr(model, 'module') and any(key.startswith('module.') for key in model_state_dict.keys()):
print("移除状态字典 key 中的 'module.' 前缀")
model_state_dict = {key.replace('module.', ''): value for key, value in model_state_dict.items()}
model.load_state_dict(model_state_dict)
model.eval()
print("模型加载完成,进入评估模式")
print("\n开始处理音频数据...")
with torch.no_grad():
for batch_idx, batch in enumerate(dataset):
print(f"\n处理批次 {batch_idx + 1}")
print("准备主特征...")
main_features = {
'input_features': batch['main_features']['input_features'].to(device),
'attention_mask': batch['main_features']['attention_mask'].to(device)
}
print(f"主特征形状: {main_features['input_features'].shape}")
if len(batch['prompt_features']) > 0:
print("\n准备提示特征...")
prompt_features = [{
'input_features': pf['input_features'].to(device),
'attention_mask': pf['attention_mask'].to(device)
} for pf in batch['prompt_features']]
print(f"提示特征数量: {len(prompt_features)}")
print(f"第一个提示特征形状: {prompt_features[0]['input_features'].shape}")
print("\n准备提示标签...")
prompt_labels = batch['prompt_labels'].to(device)
print(f"提示标签形状: {prompt_labels.shape}")
print(f"提示标签值: {prompt_labels}")
else:
prompt_features = []
prompt_labels = []
print("\n执行模型推理...")
outputs = model({
'main_features': main_features,
'prompt_features': prompt_features,
'prompt_labels': prompt_labels
})
print("\n处理模型输出...")
avg_scores = outputs['avg_logits'].softmax(dim=-1)
deepfake_scores = avg_scores[:, 1].cpu()
is_fake = deepfake_scores[0].item() > threshold
result = {"is_fake": is_fake, "confidence": deepfake_scores[0] if is_fake else 1-deepfake_scores[0]}
break
print("\n=== 检测完成 ===")
return result
# 修改音频伪造检测主函数
def audio_deepfake_detection(demonstrations, query_audio_path):
demonstration_paths = [audio[0] for audio in demonstrations if audio[0] is not None]
demonstration_labels = [audio[1] for audio in demonstrations if audio[1] is not None]
if len(demonstration_paths) != len(demonstration_labels):
demonstration_labels = demonstration_labels[:len(demonstration_paths)]
# 数据集处理
audio_dataset = dataset.DemoDataset(demonstration_paths, demonstration_labels, query_audio_path)
# 调用 GPU 检测函数
result = detect_on_gpu(audio_dataset)
return {
"Is AI Generated": result["is_fake"],
"Confidence": f"{100*result['confidence']:.2f}%"
}
# Gradio 界面
def gradio_ui():
def detection_wrapper(demonstration_audio1, label1, demonstration_audio2, label2, demonstration_audio3, label3, query_audio):
demonstrations = [
(demonstration_audio1, label1),
(demonstration_audio2, label2),
(demonstration_audio3, label3),
]
return audio_deepfake_detection(demonstrations,query_audio)
interface = gr.Interface(
fn=detection_wrapper,
inputs=[
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 1"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 1"),
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 2"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 2"),
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 3"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 3"),
gr.Audio(sources=["upload"], type="filepath", label="Query Audio (Audio for Detection)")
],
outputs=gr.JSON(label="Detection Results"),
title="Audio Deepfake Detection System",
description="Upload demonstration audios and a query audio to detect whether the query is AI-generated.",
)
return interface
if __name__ == "__main__":
demo = gradio_ui()
demo.launch()
|