Spaces:
Sleeping
Sleeping
File size: 28,111 Bytes
96c003e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
import os
import pandas as pd
import fitz # PyMuPDF
import openpyxl
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import Font, PatternFill, Border, Side, Alignment
from dataclasses import dataclass
from typing import List, Dict, Any, Tuple, Optional
import re
from pathlib import Path
import logging
from datetime import datetime
import numpy as np
# Optional imports with graceful fallback
try:
import camelot # For advanced table extraction
CAMELOT_AVAILABLE = True
except ImportError:
CAMELOT_AVAILABLE = False
print("β οΈ Camelot not installed. Run: pip install camelot-py[cv]")
try:
import tabula # Alternative table extraction
TABULA_AVAILABLE = True
except ImportError:
TABULA_AVAILABLE = False
print("β οΈ Tabula not installed. Run: pip install tabula-py")
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class TextBlock:
text: str
x: float
y: float
width: float
height: float
font_size: float
font_name: str
is_bold: bool = False
is_italic: bool = False
page_num: int = 1
block_id: str = ""
@dataclass
class TableData:
data: List[List[str]]
bbox: Tuple[float, float, float, float]
page_num: int
confidence: float = 0.0
has_header: bool = True
class PDFToExcelConverter:
"""
Enhanced PDF to Excel converter with multiple extraction methods
for better accuracy and handling of complex documents.
"""
def __init__(self):
# Check available extraction methods
available_methods = ['pymupdf'] # Always available
if CAMELOT_AVAILABLE:
available_methods.append('camelot')
if TABULA_AVAILABLE:
available_methods.append('tabula')
self.extraction_methods = available_methods
self.output_formats = {
'separate_sheets': 'Each table and text section on separate sheets',
'combined': 'All content combined logically',
'structured': 'Maintain document structure with proper formatting'
}
# Log available methods
logger.info(f"Available extraction methods: {', '.join(available_methods)}")
def extract_text_blocks_advanced(self, page, page_num: int) -> List[TextBlock]:
"""
Advanced text extraction with better formatting detection
"""
text_blocks = []
try:
# Method 1: Dictionary-based extraction (most detailed)
page_dict = page.get_text("dict")
for block_idx, block in enumerate(page_dict.get("blocks", [])):
if block.get("type", 1) != 0: # Skip non-text blocks
continue
for line_idx, line in enumerate(block.get("lines", [])):
for span_idx, span in enumerate(line.get("spans", [])):
text_content = span.get("text", "").strip()
if not text_content:
continue
bbox = span["bbox"]
flags = span.get("flags", 0)
# Enhanced font detection
font_name = span.get("font", "Arial")
font_size = span.get("size", 12)
is_bold = bool(flags & 16) or "bold" in font_name.lower()
is_italic = bool(flags & 2) or "italic" in font_name.lower()
text_block = TextBlock(
text=text_content,
x=bbox[0], y=bbox[1],
width=bbox[2] - bbox[0],
height=bbox[3] - bbox[1],
font_size=font_size,
font_name=font_name,
is_bold=is_bold,
is_italic=is_italic,
page_num=page_num,
block_id=f"p{page_num}_b{block_idx}_l{line_idx}_s{span_idx}"
)
text_blocks.append(text_block)
except Exception as e:
logger.warning(f"Advanced text extraction failed for page {page_num}: {e}")
# Fallback to simple extraction
text_blocks = self._extract_text_simple_fallback(page, page_num)
return text_blocks
def _extract_text_simple_fallback(self, page, page_num: int) -> List[TextBlock]:
"""
Fallback text extraction method
"""
text_blocks = []
try:
text = page.get_text()
if text.strip():
# Create a single text block for the entire page content
rect = page.rect
text_block = TextBlock(
text=text.strip(),
x=0, y=0,
width=rect.width,
height=rect.height,
font_size=12,
font_name="Arial",
page_num=page_num,
block_id=f"p{page_num}_fallback"
)
text_blocks.append(text_block)
except Exception as e:
logger.error(f"Fallback text extraction failed for page {page_num}: {e}")
return text_blocks
def extract_tables_multiple_methods(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using multiple methods and combine results
"""
all_tables = []
# Method 1: PyMuPDF built-in table detection
tables_pymupdf = self._extract_tables_pymupdf(pdf_path, page_num)
all_tables.extend(tables_pymupdf)
# Method 2: Camelot (if available)
if CAMELOT_AVAILABLE:
try:
tables_camelot = self._extract_tables_camelot(pdf_path, page_num)
all_tables.extend(tables_camelot)
except Exception as e:
logger.warning(f"Camelot extraction failed: {e}")
# Method 3: Tabula (if available)
if TABULA_AVAILABLE:
try:
tables_tabula = self._extract_tables_tabula(pdf_path, page_num)
all_tables.extend(tables_tabula)
except Exception as e:
logger.warning(f"Tabula extraction failed: {e}")
# Remove duplicates and return best tables
return self._deduplicate_tables(all_tables)
def _extract_tables_pymupdf(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using PyMuPDF
"""
tables = []
try:
doc = fitz.open(pdf_path)
page = doc[page_num - 1] # Convert to 0-based index
detected_tables = page.find_tables()
for i, table in enumerate(detected_tables):
try:
table_data = table.extract()
if table_data and len(table_data) > 0:
# Clean the table data
cleaned_data = []
for row in table_data:
cleaned_row = []
for cell in row:
cell_text = str(cell).strip() if cell else ""
cleaned_row.append(cell_text)
if any(cleaned_row): # Only add non-empty rows
cleaned_data.append(cleaned_row)
if cleaned_data:
tables.append(TableData(
data=cleaned_data,
bbox=table.bbox,
page_num=page_num,
confidence=0.8, # PyMuPDF generally reliable
has_header=True
))
except Exception as e:
logger.warning(f"Error extracting PyMuPDF table {i}: {e}")
doc.close()
except Exception as e:
logger.error(f"PyMuPDF table extraction failed: {e}")
return tables
def _extract_tables_camelot(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using Camelot (only if available)
"""
if not CAMELOT_AVAILABLE:
return []
tables = []
try:
# Camelot works with page numbers (1-based)
camelot_tables = camelot.read_pdf(pdf_path, pages=str(page_num), flavor='lattice')
for i, table in enumerate(camelot_tables):
df = table.df
if not df.empty:
# Convert DataFrame to list of lists
table_data = df.values.tolist()
# Add headers if they exist
if not df.columns.empty:
headers = df.columns.tolist()
table_data.insert(0, headers)
tables.append(TableData(
data=table_data,
bbox=(0, 0, 100, 100), # Camelot doesn't provide bbox
page_num=page_num,
confidence=table.accuracy / 100.0 if hasattr(table, 'accuracy') else 0.7,
has_header=True
))
except Exception as e:
logger.warning(f"Camelot extraction failed: {e}")
return tables
def _extract_tables_tabula(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using Tabula (only if available)
"""
if not TABULA_AVAILABLE:
return []
tables = []
try:
# Tabula works with page numbers (1-based)
tabula_tables = tabula.read_pdf(pdf_path, pages=page_num, multiple_tables=True)
for i, df in enumerate(tabula_tables):
if not df.empty:
# Convert DataFrame to list of lists
table_data = df.fillna('').values.tolist()
# Add headers
headers = df.columns.tolist()
table_data.insert(0, headers)
tables.append(TableData(
data=table_data,
bbox=(0, 0, 100, 100), # Tabula doesn't provide bbox
page_num=page_num,
confidence=0.7,
has_header=True
))
except Exception as e:
logger.warning(f"Tabula extraction failed: {e}")
return tables
def _deduplicate_tables(self, tables: List[TableData]) -> List[TableData]:
"""
Remove duplicate tables by comparing content
"""
if not tables:
return tables
unique_tables = []
for table in tables:
is_duplicate = False
for existing_table in unique_tables:
if self._tables_are_similar(table, existing_table):
# Keep the one with higher confidence
if table.confidence > existing_table.confidence:
unique_tables.remove(existing_table)
unique_tables.append(table)
is_duplicate = True
break
if not is_duplicate:
unique_tables.append(table)
return unique_tables
def _tables_are_similar(self, table1: TableData, table2: TableData, threshold: float = 0.8) -> bool:
"""
Check if two tables are similar (likely duplicates)
"""
if len(table1.data) != len(table2.data):
return False
if not table1.data or not table2.data:
return False
# Compare dimensions
if len(table1.data[0]) != len(table2.data[0]):
return False
# Compare content similarity
matching_cells = 0
total_cells = len(table1.data) * len(table1.data[0])
for i, (row1, row2) in enumerate(zip(table1.data, table2.data)):
for j, (cell1, cell2) in enumerate(zip(row1, row2)):
if str(cell1).strip().lower() == str(cell2).strip().lower():
matching_cells += 1
similarity = matching_cells / total_cells if total_cells > 0 else 0
return similarity >= threshold
def process_pdf_to_excel(self, pdf_path: str, output_path: str, format_type: str = 'structured') -> str:
"""
Convert PDF to Excel with enhanced processing
"""
logger.info(f"Starting PDF to Excel conversion: {pdf_path}")
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
# Extract content from PDF
pdf_content = self._extract_comprehensive_content(pdf_path)
# Create Excel workbook
output_path = self._create_excel_workbook(pdf_content, output_path, format_type)
logger.info(f"Successfully converted PDF to Excel: {output_path}")
return output_path
def _extract_comprehensive_content(self, pdf_path: str) -> Dict[str, Any]:
"""
Extract all content from PDF using multiple methods
"""
content = {
'pages': [],
'total_pages': 0,
'metadata': {}
}
try:
doc = fitz.open(pdf_path)
content['total_pages'] = doc.page_count
content['metadata'] = doc.metadata
logger.info(f"Processing {doc.page_count} pages...")
for page_num in range(doc.page_count):
page = doc[page_num]
logger.info(f"Processing page {page_num + 1}/{doc.page_count}")
# Extract text blocks
text_blocks = self.extract_text_blocks_advanced(page, page_num + 1)
# Extract tables using multiple methods
tables = self.extract_tables_multiple_methods(pdf_path, page_num + 1)
# Extract images (basic)
images = self._extract_images_basic(page, page_num + 1)
page_content = {
'page_number': page_num + 1,
'text_blocks': text_blocks,
'tables': tables,
'images': images,
'page_width': page.rect.width,
'page_height': page.rect.height
}
content['pages'].append(page_content)
doc.close()
except Exception as e:
logger.error(f"Error extracting PDF content: {e}")
raise
return content
def _extract_images_basic(self, page, page_num: int) -> List[Dict]:
"""
Basic image extraction for reference
"""
images = []
try:
image_list = page.get_images()
for i, img in enumerate(image_list):
images.append({
'index': i,
'page': page_num,
'bbox': img # Simplified
})
except Exception as e:
logger.warning(f"Image extraction failed for page {page_num}: {e}")
return images
def _create_excel_workbook(self, content: Dict[str, Any], output_path: str, format_type: str) -> str:
"""
Create Excel workbook with proper formatting
"""
with pd.ExcelWriter(output_path, engine='openpyxl') as writer:
if format_type == 'structured':
self._create_structured_workbook(content, writer)
elif format_type == 'combined':
self._create_combined_workbook(content, writer)
else: # separate_sheets
self._create_separate_sheets_workbook(content, writer)
# Add summary sheet
self._add_summary_sheet(content, writer)
# Apply formatting
self._apply_excel_formatting(output_path)
return output_path
def _create_structured_workbook(self, content: Dict[str, Any], writer):
"""
Create structured workbook maintaining document flow
"""
for page_data in content['pages']:
page_num = page_data['page_number']
# Process tables first
table_count = 0
for table in page_data['tables']:
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
sheet_name = f"P{page_num}_Table{table_count + 1}"[:31]
df.to_excel(writer, sheet_name=sheet_name, index=False)
table_count += 1
# Process text content
if page_data['text_blocks']:
# Group text blocks by proximity and formatting
text_groups = self._group_text_blocks(page_data['text_blocks'])
for i, group in enumerate(text_groups):
if group['content'].strip():
text_df = pd.DataFrame([{
'Content': group['content'],
'Font_Size': group.get('font_size', 12),
'Is_Bold': group.get('is_bold', False),
'Position_X': group.get('x', 0),
'Position_Y': group.get('y', 0)
}])
sheet_name = f"P{page_num}_Text{i + 1}"[:31]
text_df.to_excel(writer, sheet_name=sheet_name, index=False)
def _create_combined_workbook(self, content: Dict[str, Any], writer):
"""
Create combined workbook with all tables and text together
"""
all_tables = []
all_text = []
for page_data in content['pages']:
page_num = page_data['page_number']
# Collect all tables
for i, table in enumerate(page_data['tables']):
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
df['Source_Page'] = page_num
df['Table_Index'] = i + 1
all_tables.append(df)
# Collect all text
text_content = '\n'.join([block.text for block in page_data['text_blocks']])
if text_content.strip():
all_text.append({
'Page': page_num,
'Content': text_content.strip()
})
# Write combined tables
if all_tables:
combined_tables = pd.concat(all_tables, ignore_index=True)
combined_tables.to_excel(writer, sheet_name='All_Tables', index=False)
# Write combined text
if all_text:
text_df = pd.DataFrame(all_text)
text_df.to_excel(writer, sheet_name='All_Text', index=False)
def _create_separate_sheets_workbook(self, content: Dict[str, Any], writer):
"""
Create workbook with each element on separate sheets
"""
table_counter = 1
text_counter = 1
for page_data in content['pages']:
page_num = page_data['page_number']
# Each table gets its own sheet
for table in page_data['tables']:
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
sheet_name = f"Table_{table_counter}"[:31]
df.to_excel(writer, sheet_name=sheet_name, index=False)
table_counter += 1
# Page text gets its own sheet
if page_data['text_blocks']:
text_content = '\n'.join([block.text for block in page_data['text_blocks']])
if text_content.strip():
text_df = pd.DataFrame([{'Page': page_num, 'Content': text_content}])
sheet_name = f"Text_{text_counter}"[:31]
text_df.to_excel(writer, sheet_name=sheet_name, index=False)
text_counter += 1
def _group_text_blocks(self, text_blocks: List[TextBlock]) -> List[Dict]:
"""
Group text blocks by proximity and formatting
"""
if not text_blocks:
return []
# Sort by position (top to bottom, left to right)
sorted_blocks = sorted(text_blocks, key=lambda b: (b.y, b.x))
groups = []
current_group = {
'content': '',
'font_size': sorted_blocks[0].font_size,
'is_bold': sorted_blocks[0].is_bold,
'x': sorted_blocks[0].x,
'y': sorted_blocks[0].y
}
for block in sorted_blocks:
# Check if block should be in current group (similar formatting and position)
if (abs(current_group['font_size'] - block.font_size) < 2 and
current_group['is_bold'] == block.is_bold):
current_group['content'] += ' ' + block.text
else:
# Start new group
if current_group['content'].strip():
groups.append(current_group)
current_group = {
'content': block.text,
'font_size': block.font_size,
'is_bold': block.is_bold,
'x': block.x,
'y': block.y
}
# Add last group
if current_group['content'].strip():
groups.append(current_group)
return groups
def _add_summary_sheet(self, content: Dict[str, Any], writer):
"""
Add summary sheet with document statistics
"""
total_tables = sum(len(page['tables']) for page in content['pages'])
total_text_blocks = sum(len(page['text_blocks']) for page in content['pages'])
summary_data = {
'Statistic': [
'Total Pages',
'Total Tables',
'Total Text Blocks',
'Processing Date',
'Document Title'
],
'Value': [
content['total_pages'],
total_tables,
total_text_blocks,
datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
content['metadata'].get('title', 'Unknown')
]
}
summary_df = pd.DataFrame(summary_data)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
def _apply_excel_formatting(self, file_path: str):
"""
Apply formatting to the Excel file
"""
try:
wb = openpyxl.load_workbook(file_path)
# Define styles
header_font = Font(bold=True, color="FFFFFF")
header_fill = PatternFill(start_color="366092", end_color="366092", fill_type="solid")
border = Border(
left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin')
)
for sheet_name in wb.sheetnames:
ws = wb[sheet_name]
# Format headers
if ws.max_row > 0:
for cell in ws[1]:
cell.font = header_font
cell.fill = header_fill
cell.alignment = Alignment(horizontal='center', vertical='center')
cell.border = border
# Auto-adjust column widths
for column in ws.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
try:
if len(str(cell.value)) > max_length:
max_length = len(str(cell.value))
except:
pass
adjusted_width = min(max_length + 2, 50)
ws.column_dimensions[column_letter].width = adjusted_width
wb.save(file_path)
except Exception as e:
logger.warning(f"Could not apply formatting: {e}")
# Usage example and main function
def install_dependencies():
"""
Print installation instructions for missing dependencies
"""
print("π¦ INSTALLATION INSTRUCTIONS:")
print("=" * 50)
required_packages = [
("PyMuPDF", "pip install PyMuPDF", True),
("pandas", "pip install pandas", True),
("openpyxl", "pip install openpyxl", True),
("numpy", "pip install numpy", True),
("camelot-py", "pip install camelot-py[cv]", CAMELOT_AVAILABLE),
("tabula-py", "pip install tabula-py", TABULA_AVAILABLE)
]
print("\nβ
CORE PACKAGES (Required):")
for name, cmd, available in required_packages[:4]:
status = "β
Installed" if available else "β Missing"
print(f" {name}: {status}")
if not available:
print(f" Install: {cmd}")
print("\nπ§ OPTIONAL PACKAGES (For better table extraction):")
for name, cmd, available in required_packages[4:]:
status = "β
Installed" if available else "β Missing"
print(f" {name}: {status}")
if not available:
print(f" Install: {cmd}")
print("\nπ‘ INSTALL ALL AT ONCE:")
print("pip install PyMuPDF pandas openpyxl numpy camelot-py[cv] tabula-py")
print("\n" + "=" * 50)
def main():
"""
Main function to demonstrate usage
"""
print("π Enhanced PDF to Excel Converter")
print("=" * 40)
# Show installation status
install_dependencies()
converter = PDFToExcelConverter()
# Example usage
pdf_path = "input.pdf" # Replace with your PDF path
output_path = "output.xlsx" # Replace with desired output path
try:
# Check if PDF file exists
if not os.path.exists(pdf_path):
print(f"\nβ PDF file not found: {pdf_path}")
print("Please update the 'pdf_path' variable with your actual PDF file path.")
return
print(f"\nπ Converting: {pdf_path}")
result = converter.process_pdf_to_excel(
pdf_path=pdf_path,
output_path=output_path,
format_type='structured' # Options: 'structured', 'combined', 'separate_sheets'
)
print(f"β
Conversion completed successfully: {result}")
except Exception as e:
print(f"β Conversion failed: {e}")
print("\nπ οΈ TROUBLESHOOTING:")
print("1. Make sure all required packages are installed")
print("2. Check that your PDF file exists and is readable")
print("3. Ensure you have write permissions for the output directory")
if __name__ == "__main__":
main() |