File size: 9,926 Bytes
52160a9
 
 
3b47f92
52160a9
 
 
 
 
 
 
 
 
3b47f92
 
52160a9
 
 
3b47f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52160a9
3b47f92
 
52160a9
 
3b47f92
 
 
 
 
 
 
 
 
 
 
 
 
 
52160a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b47f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52160a9
3b47f92
 
 
 
 
52160a9
 
3b47f92
52160a9
 
3b47f92
 
 
 
 
52160a9
3b47f92
52160a9
3b47f92
 
 
 
 
52160a9
3b47f92
52160a9
3b47f92
52160a9
3b47f92
 
 
52160a9
3b47f92
 
 
 
 
 
 
 
 
52160a9
 
3b47f92
52160a9
 
3b47f92
 
 
 
52160a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np #to help us use numerical functions
import pandas as pd #to help us use functions for dealing with dataframe
import os #provides functions for creating and removing a directory
import random
import matplotlib.pyplot as plt
from collections import defaultdict #data colector
import surprise
from surprise.reader import Reader
from surprise import Dataset
from surprise.model_selection import GridSearchCV
from surprise.model_selection import cross_validate
from surprise import SVD
from surprise import NMF
from sklearn.feature_extraction.text import TfidfVectorizer #for TF-IDF
from sklearn.metrics.pairwise import linear_kernel



W_belongs_to_collection = 0.16
W_genres = 0.10
W_original_language = 0.01
W_title = 0.11
W_overview = 0.08
W_production_countries = 0.01
W_production_companies = 0.02
W_tagline = 0.10
W_keywords = 0.10
W_Director = 0.03
W_Writer = 0.02
W_Cast = 0.02
W_Top_Cast = 0.03
W_budget_categorized = 0.01
W_length = 0.02
W_average_vote_categorized = 0.08
W_count_vote_categorized = 0.07
W_era = 0.03
##################################################################
tfidf = TfidfVectorizer(stop_words='english') #defining tfidf model which removes additional words such as 'the', 'or', 'in'

movies_filename = pd.read_csv('movies_metadata.csv', low_memory = False)
ratings_filename = pd.read_csv('ratings_small.csv', low_memory = False)
df_popular_popularity = pd.read_csv('df_popular_popularity.csv', low_memory = False)
df_popular_WR_Q = pd.read_csv('df_popular_WR_Q.csv', low_memory = False)
df_cbf_Q = pd.read_csv('df_cbf_Q.csv', low_memory = False)

df_cbf_Q['belongs_to_collection'] = df_cbf_Q['belongs_to_collection'].fillna("")
df_cbf_Q['overview'] = df_cbf_Q['overview'].fillna("")
df_cbf_Q['spoken_languages'] = df_cbf_Q['spoken_languages'].fillna("")
df_cbf_Q['tagline'] = df_cbf_Q['tagline'].fillna("")
df_cbf_Q['Director'] = df_cbf_Q['Director'].fillna("")
df_cbf_Q['Writer'] = df_cbf_Q['Writer'].fillna("")

df_cbf1 = df_cbf_Q
df_cbf2 = df_cbf_Q

ratings = ratings_filename
movie_md = movies_filename
######################################################################

# movie dataframe with votes more than 100
movie_md = movie_md[movie_md['vote_count']>100]

# removing user with below 10 votes
ratings = ratings.groupby("userId").filter(lambda x: x['userId'].count() >= 10)

# IDs of movies with count more than 100
movie_ids = [int(x) for x in movie_md['id'].values]

# Select ratings of movies with more than 100 counts
ratings = ratings[ratings['movieId'].isin(movie_ids)]

#holding only 1 millions of ratings
### in case of not using ratings_small
#ratings = ratings[:1000000]

# Reset Index
ratings.reset_index(inplace=True, drop=True)

#############################################################################################

df_cbf_tfidf_belongs_to_collection = tfidf.fit_transform(df_cbf1['belongs_to_collection'])
cosine_sim_belongs_to_collection = linear_kernel(df_cbf_tfidf_belongs_to_collection, df_cbf_tfidf_belongs_to_collection)
df_cbf_tfidf_genres = tfidf.fit_transform(df_cbf1['genres'])
cosine_sim_genres = linear_kernel(df_cbf_tfidf_genres, df_cbf_tfidf_genres)
df_cbf_tfidf_original_language = tfidf.fit_transform(df_cbf1['original_language'])
cosine_sim_original_language = linear_kernel(df_cbf_tfidf_original_language, df_cbf_tfidf_original_language)
df_cbf_tfidf_title = tfidf.fit_transform(df_cbf1['title'])
cosine_sim_title = linear_kernel(df_cbf_tfidf_title, df_cbf_tfidf_title)
df_cbf_tfidf_overview = tfidf.fit_transform(df_cbf1['overview'])
cosine_sim_overview = linear_kernel(df_cbf_tfidf_overview, df_cbf_tfidf_overview)
df_cbf_tfidf_pruduction_countries = tfidf.fit_transform(df_cbf1['production_countries'])
cosine_sim_pruduction_countries = linear_kernel(df_cbf_tfidf_pruduction_countries, df_cbf_tfidf_pruduction_countries)
df_cbf_tfidf_pruduction_companies = tfidf.fit_transform(df_cbf1['production_companies'])
cosine_sim_pruduction_companies = linear_kernel(df_cbf_tfidf_pruduction_companies, df_cbf_tfidf_pruduction_companies)
df_cbf_tfidf_tagline = tfidf.fit_transform(df_cbf1['tagline'])
cosine_sim_tagline = linear_kernel(df_cbf_tfidf_tagline, df_cbf_tfidf_tagline)
df_cbf_tfidf_keywords = tfidf.fit_transform(df_cbf1['keywords'])
cosine_sim_keywords = linear_kernel(df_cbf_tfidf_keywords, df_cbf_tfidf_keywords)
df_cbf_tfidf_Director = tfidf.fit_transform(df_cbf1['Director'])
cosine_sim_Director = linear_kernel(df_cbf_tfidf_Director, df_cbf_tfidf_Director)
df_cbf_tfidf_Writer = tfidf.fit_transform(df_cbf1['Writer'])
cosine_sim_Writer = linear_kernel(df_cbf_tfidf_Writer, df_cbf_tfidf_Writer)
df_cbf_tfidf_Cast = tfidf.fit_transform(df_cbf1['Cast'])
cosine_sim_Cast = linear_kernel(df_cbf_tfidf_Cast, df_cbf_tfidf_Cast)
df_cbf_tfidf_Top_Cast = tfidf.fit_transform(df_cbf1['Top Cast'])
cosine_sim_Top_Cast = linear_kernel(df_cbf_tfidf_Top_Cast, df_cbf_tfidf_Top_Cast)
df_cbf_tfidf_budget_categorized = tfidf.fit_transform(df_cbf1['budget_categorized'])
cosine_sim_budget_categorized = linear_kernel(df_cbf_tfidf_budget_categorized, df_cbf_tfidf_budget_categorized)
df_cbf_tfidf_Length = tfidf.fit_transform(df_cbf1['Length'])
cosine_sim_Length = linear_kernel(df_cbf_tfidf_Length, df_cbf_tfidf_Length)
df_cbf_tfidf_average_vote_categorized = tfidf.fit_transform(df_cbf1['average_vote_categorized'])
cosine_sim_average_vote_categorized = linear_kernel(df_cbf_tfidf_average_vote_categorized, df_cbf_tfidf_average_vote_categorized)
df_cbf_tfidf_count_vote_categorized = tfidf.fit_transform(df_cbf1['count_vote_categorized'])
cosine_sim_count_vote_categorized = linear_kernel(df_cbf_tfidf_count_vote_categorized, df_cbf_tfidf_count_vote_categorized)
df_cbf_tfidf_era = tfidf.fit_transform(df_cbf1['era'])
cosine_sim_era = linear_kernel(df_cbf_tfidf_era, df_cbf_tfidf_era)
####################################################################################################################################


cosin_sim_final = np.multiply(cosine_sim_belongs_to_collection, W_belongs_to_collection) + np.multiply(cosine_sim_genres, W_genres) + np.multiply(cosine_sim_original_language, W_original_language) + np.multiply(cosine_sim_title, W_title) + np.multiply(cosine_sim_overview, W_overview) + np.multiply(cosine_sim_pruduction_countries, W_production_countries) + np.multiply(cosine_sim_pruduction_companies, W_production_companies) + np.multiply(cosine_sim_tagline, W_tagline) + np.multiply(cosine_sim_keywords, W_keywords) + np.multiply(cosine_sim_Director, W_Director) + np.multiply(cosine_sim_Writer, W_Writer) + np.multiply(cosine_sim_Cast, W_Cast) + np.multiply(cosine_sim_Top_Cast, W_Top_Cast) + np.multiply(cosine_sim_budget_categorized, W_budget_categorized) + np.multiply(cosine_sim_Length, W_length) + np.multiply(cosine_sim_average_vote_categorized, W_average_vote_categorized) + np.multiply(cosine_sim_count_vote_categorized, W_count_vote_categorized) + np.multiply(cosine_sim_era, W_era)


df_cbf2_indices = pd.Series(df_cbf2.index, index=df_cbf2['title'])
#################################################################

#recommend based on popularity
def final_recommender_hot_picks_now(Watched_list):
  recommended_list = []
  for i in range(10):
    recommended_list.append(df_popular_popularity.loc[i, 'title'])
  return recommended_list


#recommend based on weighted ratings
def final_recommender_hot_picks_of_all_time(Watched_list):
  recommended_list = []
  for i in range(10):
    recommended_list.append(df_popular_WR_Q.loc[i, 'title'])
  return recommended_list


#recommend based on content based
def final_recommender_for_you(Watched_list):
  recommended_list = []
  if len(Watched_list) < 3:
    for i in range(10):
      recommended_list.append(df_popular_WR_Q.loc[i, 'title'])
  else:
    Watched_movies_list = Watched_list[-3:]
    recently_watched = Watched_movies_list[-3:]
    for i in range(len(recently_watched)):
      y = df_cbf2_indices[recently_watched[i]]
      z = list(enumerate(cosin_sim_final[y]))
      z = sorted(z, key=lambda x: x[1], reverse=True)
      z = z[1:16]
      k = [i[0] for i in z]
      for j in k:
        recommended_list.append(df_cbf2.loc[j, 'title'])
  for i in range(len(Watched_movies_list)):
    recommended_list.append(Watched_movies_list[i])
  recommended_list = list(set(recommended_list))
  for i in Watched_list:
    recommended_list.remove(i)
  random.shuffle(recommended_list)
  recommended_list = recommended_list[:15]
  return recommended_list




def recommender_svd(watch_list):
  df1 = ratings
  for i in range(len(watch_list)):
    df1 = df1.append({'userId' : int(ratings.loc[26123,'userId'])+1, 'movieId' : int(movie_md.loc[movie_md['title'] == watch_list[i], 'id']), 'rating' : 5, 'timestamp' : 0},
                ignore_index = True)

  # Initialize a surprise reader object
  reader = Reader(line_format='user item rating', sep=',', rating_scale=(0,5), skip_lines=1)
  # Load the data
  data = Dataset.load_from_df(ratings[['userId','movieId','rating']], reader=reader)
  # Build trainset object(perform this only when you are using whole dataset to train)
  trainset = data.build_full_trainset()
  # Initialize model
  svd = SVD()
  # cross-validate
  svd.fit(trainset)

  recommendations = []
  user_movie_interactions_matrix = df1.pivot(index='userId', columns='movieId', values='rating')

  non_interacted_movies = user_movie_interactions_matrix.loc[int(ratings.loc[26123,'userId'])+1][user_movie_interactions_matrix.loc[int(ratings.loc[26123,'userId'])+1].isnull()].index.tolist()

  for item_id in non_interacted_movies:
    est = svd.predict(int(ratings.loc[26123,'userId'])+1, item_id).est
    movie_name = movie_md[movie_md['id']==str(item_id)]['title'].values[0]
    recommendations.append((movie_name, est))

  recommendations.sort(key=lambda x: x[1], reverse=True)
  recommendations = [x[0] for x in recommendations]
  return recommendations[:15]
####### #######################################################