File size: 9,002 Bytes
aa99d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# import gradio as gr
# from gradio_unifiedaudio import UnifiedAudio
# from huggingface_hub import InferenceClient
# from transformers import pipeline
# import tempfile
# import torch
# import subprocess

# MODEL_NAME = "openai/whisper-large-v3"
# BATCH_SIZE = 8
# FILE_LIMIT_MB = 1000
# YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

# device = 0 if torch.cuda.is_available() else "cpu"
# print( torch.cuda.is_available())

# pipe = pipeline(
#     task="automatic-speech-recognition",
#     model=MODEL_NAME,
#     chunk_length_s=30,
#     device=device,
# )


# def transcribe(inputs, task="translate"):
#     if inputs is None:
#         raise gr.Error("No audio file submitted! Please record an audio file before submitting your request.")

#     text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
#     return text

# # Initialize the Hugging Face inference client
# client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# system_instructions1 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

# # Maintain history of interactions
# history = []

# def model(text):
#     generate_kwargs = dict(
#         temperature=0.7,
#         max_new_tokens=512,
#         top_p=0.95,
#         repetition_penalty=1,
#         do_sample=True,
#         seed=42,
#     )
    
#     formatted_prompt = system_instructions1 + text + "[JARVIS]"
#     stream = client1.text_generation(
#         formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
#     output = ""
#     for response in stream:
#         if not response.token.text == "</s>":
#             output += response.token.text
#     return output

# def process_audio(audio):
#     if not audio:
#         return "Please record an audio.", None

#     print("Received audio: ", audio)
#     text = transcribe(audio)
#     print("Whisper Response -> ", text)
    
#     # Append the transcribed text to the history
#     history.append(text)
#     history_text = " ".join(history)

#     mistral_response = model(history_text)
#     print("Mistral Response -> ", mistral_response)

#     # Using a temporary file to save the TTS output
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
#         tmp_path = tmp_file.name

#     # Construct the edge-tts command
#     command = ["edge-tts", "-t", mistral_response, "--write-media", tmp_path]
#     print(' '.join(command))

#     # Run the command using subprocess.run
#     result = subprocess.run(command, capture_output=True, text=True)

#     # Check for errors
#     if result.returncode == 0:
#         print("Command executed successfully.")
#     else:
#         print(f"Command failed with return code {result.returncode}")
#         print(f"Error message: {result.stderr}")

#     return tmp_path

# def clear_audio(audio):
#     return UnifiedAudio(value=None)



# DESCRIPTION = """ # <center><b>JARVISโšก</b></center>
#         ### <center>Voice-Mistral-Voice</center>
#         """

# MORE = """ ## TRY Other Models
#         ###  https://huggingface.co/spaces/KingNish/Instant-Video
#         ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
#         """

# BETA = """ ### Voice Chat (BETA)"""

# FAST = """## Fastest Model"""

# # Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown(DESCRIPTION)


#     with gr.Column():
#         with gr.Row():
#             audio_input = UnifiedAudio(sources="microphone", type="filepath", image="./robot.png",container=True)
#             output_audio = UnifiedAudio(sources="microphone", type="filepath", image="./logo.png",autoplay=True)

#     gr.Markdown(FAST)
#     clear_audio_button = gr.Button("Record Again")
#     # Link the audio input change to process_audio function
#     audio_input.change(process_audio, inputs=audio_input, outputs=[output_audio])
#     # Link the clear audio button to the clear_audio function
#     clear_audio_button.click(clear_audio, inputs=None, outputs=[audio_input, output_audio])

# gr.Markdown(MORE)
# if __name__ == '__main__':
#     demo.launch()


import gradio as gr
from gradio_unifiedaudio import UnifiedAudio
from huggingface_hub import InferenceClient
from transformers import pipeline
import torch
import tempfile
import subprocess

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Initialize ASR pipeline
asr_pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

# Initialize Mistral model client
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

# History of interactions
history = []

def transcribe(inputs, task="translate"):
    if inputs is None:
        raise ValueError("No audio file submitted! Please record an audio file before submitting your request.")

    text = asr_pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return text

def model(text):
    generate_kwargs = dict(
        temperature=0.7,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    
    formatted_prompt = system_instructions1 + text + "[JARVIS]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    return output




def process_audio(audio):
    if not audio:
        return "Please record an audio.", None

    # Provide user feedback
    print("Processing audio...")

    text = transcribe(audio)
    print("Whisper Response -> ", text)
    
    history.append(text)
    history_text = " ".join(history)

    mistral_response = model(history_text)
    print("Mistral Response -> ", mistral_response)

    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name

    command = ["edge-tts", "-t", mistral_response, "--write-media", tmp_path]
    print(' '.join(command))

    result = subprocess.run(command, capture_output=True, text=True)

    if result.returncode == 0:
        print("Command executed successfully.")
    else:
        print(f"Command failed with return code {result.returncode}")
        print(f"Error message: {result.stderr}")
 
    return mistral_response,tmp_path

def clear_audio(audio):
    return UnifiedAudio(value=None),UnifiedAudio(value=None)


DESCRIPTION = """ # <center><b>Voice-Mistral-Voice ๐Ÿค—</b></center>
        ### <center>Voice-Mistral-Voice</center>
        """

MORE = """ ## TRY Other Models
        ###  https://huggingface.co/spaces/KingNish/Instant-Video
        ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
        """

BETA = """ ### Voice Chat (BETA)"""

FAST = """## Fastest Model"""

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Column():
        with gr.Row():
            audio_input = UnifiedAudio(sources="microphone", type="filepath", image="./robot.png", container=True)
            output_audio = UnifiedAudio(sources="microphone", type="filepath", image="./logo.png", autoplay=True)
    audio_text = gr.Text()
    gr.Markdown(FAST)
    clear_audio_button = gr.Button("Record Again")
    audio_input.change(process_audio, inputs=audio_input, outputs=[audio_text,output_audio])
    clear_audio_button.click(clear_audio, inputs=None, outputs=[audio_input, output_audio])

gr.Markdown(MORE)

if __name__ == '__main__':
    demo.queue(max_size=200).launch()