File size: 15,339 Bytes
ecc9585 c6aa162 ecc9585 82af7c3 ecc9585 c6aa162 ecc9585 82af7c3 5e859e9 ecc9585 e667b0d 1e6b447 e667b0d ecc9585 c638462 ecc9585 c638462 ecc9585 4eb6b75 ecc9585 1e6b447 82af7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
##!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time : 2023-06-01
# @Author : ashui(Binghui Chen)
import os
os.system("pip install gradio==4.8.0")
from sympy import im
import time
import spaces
import cv2
import gradio as gr
import numpy as np
import random
import math
import uuid
import torch
from torch import autocast
from src.util import resize_image, upload_np_2_oss
from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
import diffusers
import sys, os
from PIL import Image, ImageFilter, ImageOps, ImageDraw
from segment_anything import SamPredictor, sam_model_registry
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)
mobile_sam = sam_model_registry['vit_h'](checkpoint='models/sam_vit_h_4b8939.pth').to("cuda")
mobile_sam.eval()
mobile_predictor = SamPredictor(mobile_sam)
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
# - - - - - examples - - - - - #
# 输入图地址, 文本, 背景图地址, index, []
image_examples = [
["imgs/000.jpg", "A young woman in short sleeves shows off a mobile phone", None, 0, []],
["imgs/001.jpg", "A young woman wears short sleeves, her hand is holding a bottle.", None, 1, []],
["imgs/003.png", "A woman is wearing a black suit against a blue background", "imgs/003_bg.jpg", 2, []],
["imgs/002.png", "A young woman poses in a dress, she stands in front of a blue background", "imgs/002_bg.png", 3, []],
["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "water splash", None, 4, []],
["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "", "imgs/bg_gen/ref_imgs/df9a93ac2bca12696a9166182c4bf02ad9679aa5.jpg", 5, []],
["imgs/bg_gen/base_imgs/IMG_2941.png", "On the desert floor", None, 6, []],
["imgs/bg_gen/base_imgs/b2b1ed243364473e49d2e478e4f24413.png","White ground, white background, light coming in, Canon",None,7,[]],
]
img = "image_gallery/"
files = os.listdir(img)
files = sorted(files)
showcases = []
for idx, name in enumerate(files):
temp = os.path.join(os.path.dirname(__file__), img, name)
showcases.append(temp)
@spaces.GPU()
def process(original_image, original_mask, input_mask, selected_points, prompt,negative_prompt,guidance_scale,steps,strength,scheduler):
if original_image.shape[0]>original_image.shape[1]:
original_image=cv2.resize(original_image,(int(original_image.shape[1]*1000/original_image.shape[0]),1000))
if original_mask.shape[0]>original_mask.shape[1]:
original_mask=cv2.resize(original_mask,(int(original_mask.shape[1]*1000/original_mask.shape[0]),1000))
if original_image is None:
raise gr.Error('Please upload the input image')
if (original_mask is None or len(selected_points)==0) and input_mask is None:
raise gr.Error("Please click the region where you want to keep unchanged, or upload a white-black Mask image where white color indicates region to be retained.")
# load example image
if isinstance(original_image, int):
image_name = image_examples[original_image][0]
original_image = cv2.imread(image_name)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
if input_mask is not None:
H,W=original_image.shape[:2]
original_mask = cv2.resize(input_mask, (W, H))
else:
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
request_id = str(uuid.uuid4())
# input_image_url = upload_np_2_oss(original_image, request_id+".png")
# input_mask_url = upload_np_2_oss(original_mask, request_id+"_mask.png")
# source_background_url = "" if source_background is None else upload_np_2_oss(source_background, request_id+"_bg.png")
if negative_prompt == "":
negative_prompt = None
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
# Image.fromarray(original_mask).save("original_mask.png")
init_image = Image.fromarray(original_image).convert("RGB")
mask = Image.fromarray(original_mask).convert("RGB")
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
# person detect: [[x1,y1,x2,y2,score],]
# det_res = call_person_detect(input_image_url)
res = []
# if len(det_res)>0:
# if len(prompt)==0:
# raise gr.Error('Please input the prompt')
# # res = call_virtualmodel(input_image_url, input_mask_url, source_background_url, prompt, face_prompt)
# else:
# ###
# if len(prompt)==0:
# prompt=None
# ref_image_url=None if source_background_url =='' else source_background_url
# original_mask=original_mask[:,:,:1]
# base_image=np.concatenate([original_image, original_mask],axis=2)
# base_image_url=upload_np_2_oss(base_image, request_id+"_base.png")
# res=call_bg_genration(base_image_url,ref_image_url,prompt,ref_prompt_weight=0.5)
# Image.fromarray(input_mask).save("input_mask.png")
res= output.images[0]
res = res.convert("RGB")
#resize the output image to original image size
res = res.resize((original_image.shape[1],original_image.shape[0]), Image.LANCZOS)
return [res], request_id, True
block = gr.Blocks(
css="css/style.css",
theme=gr.themes.Soft(
radius_size=gr.themes.sizes.radius_none,
text_size=gr.themes.sizes.text_md)
).queue(max_size=40, api_open=False)
#concurrency_count=2,
with block:
with gr.Row():
with gr.Column():
gr.HTML(f"""
</br>
<div class="baselayout" style="text-shadow: white 0.01rem 0.01rem 0.4rem; position:fixed; z-index: 9999; top:0; left:0;right:0; background-size:100% 100%">
<h1 style="text-align:center; color:Black; font-size:3rem; position: relative;"> SAM + SDXL Inpainting </h1>
</div>
</br>
</br>
<div style="text-align: center;">
<h1 >ReplaceAnything using SAM + SDXL Inpainting as you want: Ultra-high quality content replacement</h1>
</div>
""")
with gr.Tabs(elem_classes=["Tab"]):
with gr.TabItem("Image Create"):
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown("""
- ⭐️ <b>step1:</b>Upload or select one image from Example
- ⭐️ <b>step2:</b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged)
- ⭐️ <b>step3:</b>Input prompt or reference image (highly-recommended) for generating new contents
- ⭐️ <b>step4:</b>Click Run button
""")
with gr.Row():
with gr.Column():
with gr.Column(elem_id="Input"):
with gr.Row():
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Input Image"):
input_image = gr.Image(type="numpy", label="input",scale=2)
original_image = gr.State(value=None)
original_mask = gr.State(value=None)
selected_points = gr.State([])
with gr.Row(elem_id="Seg"):
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
input_mask = gr.Image(type="numpy", label="Mask Image")
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Please input your prompt",value='hand,blur,face,bad',lines=1)
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
#mobile_collapse=False,
with gr.Row(equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
run_button = gr.Button("Run",elem_id="btn")
with gr.Column():
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Outputs"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
# recommend=gr.Button("Recommend results to Image Gallery",elem_id="recBut")
request_id=gr.State(value="")
gallery_flag=gr.State(value=False)
# once user upload an image, the original image is stored in `original_image`
def store_img(img):
# image upload is too slow
# if min(img.shape[0], img.shape[1]) > 896:
# img = resize_image(img, 896)
# if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
# raise gr.Error('image aspect ratio cannot be larger than 2.0')
return img, img, [], None # when new image is uploaded, `selected_points` should be empty
input_image.upload(
store_img,
[input_image],
[input_image, original_image, selected_points]
)
# user click the image to get points, and show the points on the image
def segmentation(img, sel_pix):
print("segmentation")
# online show seg mask
points = []
labels = []
for p, l in sel_pix:
points.append(p)
labels.append(l)
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
with torch.no_grad():
with autocast("cuda"):
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
for i in range(3):
output_mask[masks[0] == True, i] = 0.0
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[masks[0] == True, i] = color_mask[i]
masked_img = img / 255 * 0.3 + mask_all * 0.7
masked_img = masked_img*255
## draw points
for point, label in sel_pix:
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
return masked_img, output_mask
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
if point_type == 'foreground':
sel_pix.append((evt.index, 1)) # append the foreground_point
elif point_type == 'background':
sel_pix.append((evt.index, 0)) # append the background_point
else:
sel_pix.append((evt.index, 1)) # default foreground_point
if isinstance(img, int):
image_name = image_examples[img][0]
img = cv2.imread(image_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# online show seg mask
if img.shape[0]>img.shape[1]:
img=cv2.resize(img,(int(img.shape[1]*1000/img.shape[0]),1000))
masked_img, output_mask = segmentation(img, sel_pix)
return masked_img.astype(np.uint8), output_mask
input_image.select(
get_point,
[original_image, selected_points, radio],
[input_image, original_mask],
)
# undo the selected point
def undo_points(orig_img, sel_pix):
# draw points
output_mask = None
if len(sel_pix) != 0:
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
temp = cv2.imread(image_examples[orig_img][0])
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
else:
temp = orig_img.copy()
sel_pix.pop()
# online show seg mask
if len(sel_pix) !=0:
temp, output_mask = segmentation(temp, sel_pix)
return temp.astype(np.uint8), output_mask
else:
gr.Error("Nothing to Undo")
undo_button.click(
undo_points,
[original_image, selected_points],
[input_image, original_mask]
)
def upload_to_img_gallery(img, res, re_id, flag):
if flag:
gr.Info("Image uploading")
if isinstance(img, int):
image_name = image_examples[img][0]
img = cv2.imread(image_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
_ = upload_np_2_oss(img, name=re_id+"_ori.jpg", gallery=True)
for idx, r in enumerate(res):
r = cv2.imread(r['name'])
r = cv2.cvtColor(r, cv2.COLOR_BGR2RGB)
_ = upload_np_2_oss(r, name=re_id+f"_res_{idx}.jpg", gallery=True)
flag=False
gr.Info("Images have beend uploaded and are under check")
else:
gr.Info("Nothing to to")
return flag
# recommend.click(
# upload_to_img_gallery,
# [original_image, result_gallery, request_id, gallery_flag],
# [gallery_flag]
# )
# ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt,negative_prompt,guidance_scale,steps,strength,scheduler]
ips=[original_image, original_mask, input_mask, selected_points, prompt,negative_prompt,guidance_scale,steps,strength,scheduler]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, request_id, gallery_flag])
block.launch(max_threads=400)
|