Spaces:
Runtime error
Runtime error
File size: 8,611 Bytes
3081d59 e30a6e1 3081d59 e30a6e1 f8f94e7 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 9916843 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 064f75e e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 f8f94e7 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 ce005b2 e30a6e1 ce005b2 064f75e e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 ce005b2 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 ce005b2 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 62ffb75 3081d59 9916843 3081d59 9916843 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 3081d59 e30a6e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# pip install diffusers, transformers, accelerate, safetensors, huggingface_hub
import os
os.system("pip install -U peft")
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import (
StableDiffusionXLPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
DESCRIPTION = """
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
This is a demo of https://huggingface.co/jiaxiangc/res-adapter ResAdapter by ByteDance.
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024.
"""
if not torch.cuda.is_available():
DESCRIPTION += (
"\n<h1>Running on CPU π₯Ά This demo does not work on CPU.</a> instead</h1>"
)
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe = pipe.to(device)
# Load resadapter
pipe.load_lora_weights(
hf_hub_download(
repo_id="jiaxiangc/res-adapter",
subfolder="sdxl-i",
filename="resolution_lora.safetensors",
),
adapter_name="res_adapter",
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0,
num_inference_steps: int = 4,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
print(f'** Generating image for: "{prompt}" **')
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0])
base_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
output_type="pil",
generator=generator,
).images[0]
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
res_adapt = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
output_type="pil",
generator=generator,
).images[0]
return [res_adapt, base_image]
examples = [
"A girl smiling",
"A boy smiling",
]
theme = gr.themes.Base(
font=[
gr.themes.GoogleFont("Libre Franklin"),
gr.themes.GoogleFont("Public Sans"),
"system-ui",
"sans-serif",
],
)
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
container=False,
placeholder="Enter your prompt",
)
run_button = gr.Button("Generate")
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"),
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(
label="Use negative prompt 2", value=False
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter your prompt",
visible=True,
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0,
maximum=20,
step=0.1,
value=0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=None,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=gr.Gallery(label="Left is ResAdapter and Right is Base"),
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|