Spaces:
Sleeping
Sleeping
File size: 22,245 Bytes
88cd70c 5c4b9bd 51aea90 88cd70c 5c4b9bd 51aea90 88cd70c 5c4b9bd 51aea90 88cd70c 5c4b9bd 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 5c4b9bd 88cd70c 51aea90 5c4b9bd 88cd70c 5c4b9bd 88cd70c 5c4b9bd d9a1752 5c4b9bd d9a1752 5c4b9bd d9a1752 a8013bd 88cd70c 6d0dd24 88cd70c 51aea90 88cd70c 51aea90 722f094 51aea90 722f094 51aea90 722f094 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 8e6e33b 88cd70c 51aea90 88cd70c 51aea90 8e6e33b 88cd70c 51aea90 88cd70c 51aea90 8e6e33b 51aea90 8e6e33b 88cd70c 51aea90 88cd70c 51aea90 b02ccbc 88cd70c 51aea90 5c4b9bd 51aea90 5c4b9bd 51aea90 5c4b9bd 51aea90 5c4b9bd 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 743b1a3 51aea90 88cd70c 743b1a3 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 88cd70c 51aea90 743b1a3 51aea90 6d0dd24 5c4b9bd 2860a44 5c4b9bd 2860a44 6d0dd24 51aea90 88cd70c 51aea90 5c4b9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
import pickle
from model.Vision_Transformer_with_mask import vit_base_patch16_224,Attention,CrossAttention,Attention_ori
from model.CoordAttention import *
from typing import Tuple, Type
from torch import Tensor, nn
#import tempfile
def load_from_pkl(load_path):
data_input = open(load_path, 'rb')
read_data = pickle.load(data_input)
data_input.close()
return read_data
class MLP_att_out(nn.Module):
def __init__(self, input_dim, inter_dim=None, output_dim=None, activation="relu", drop=0.0):
super().__init__()
self.input_dim = input_dim
self.inter_dim = inter_dim
self.output_dim = output_dim
if inter_dim is None: self.inter_dim=input_dim
if output_dim is None: self.output_dim=input_dim
self.linear1 = nn.Linear(self.input_dim, self.inter_dim)
self.activation = self._get_activation_fn(activation)
self.dropout3 = nn.Dropout(drop)
self.linear2 = nn.Linear(self.inter_dim, self.output_dim)
self.dropout4 = nn.Dropout(drop)
self.norm3 = nn.LayerNorm(self.output_dim)
def forward(self, x):
x = self.linear2(self.dropout3(self.activation(self.linear1(x))))
x = x + self.dropout4(x)
x = self.norm3(x)
return x
def _get_activation_fn(self, activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
class FusionAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
"""
super().__init__()
self.self_attn = Attention_ori(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_mask_to_image = CrossAttention(dim=embedding_dim, num_heads=num_heads)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_mask = CrossAttention(dim=embedding_dim, num_heads=num_heads)
def forward(self, img_emb: Tensor, mask_emb: Tensor, atten_mask: Tensor) -> Tuple[ Tensor]:
# Self attention block #最开始的时候 queries=query_pe
#queries: Tensor, keys: Tensor
queries = mask_emb
attn_out = self.self_attn(queries) #小图
queries = attn_out
#queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, mask attending to image embedding
q = queries #1,5,256
k = img_emb # v是值,因此用keys?
input_x = torch.cat((q, k), dim=1) # 2 50 768
attn_out = self.cross_attn_mask_to_image(input_x) #TODO 要不要mask呢 交叉的时候 先不用试试
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = img_emb
k = queries
input_x = torch.cat((q, k), dim=1)
attn_out = self.cross_attn_image_to_mask(input_x)
img_emb = img_emb + attn_out
img_emb = self.norm4(img_emb)
return img_emb
class my_model7(nn.Module):
'''不用mask的版本
concate 部分 加了nor 加 attention
attention 用不一样的方法
'''
def __init__(self, pretrained=False,num_classes=3,in_chans=1,img_size=224, **kwargs):
super().__init__()
self.backboon1 = vit_base_patch16_224(pretrained=False,in_chans=in_chans, as_backbone=True,img_size=img_size)
if pretrained:
pre_train_model = timm.create_model('vit_base_patch16_224', pretrained=True, in_chans=in_chans, num_classes=3)
self.backboon1 = load_weights(self.backboon1, pre_train_model.state_dict())
#self.backboon2 = vit_base_patch32_224(pretrained=False,as_backbone=True) #TODO 同一个网络共享参数/不共享参数/patch不同网络
self.self_atten_img = Attention_ori(dim= self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
#self.self_atten_mask = Attention(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
self.self_atten_mask = Attention_ori(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
self.cross_atten = FusionAttentionBlock(embedding_dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
#self.external_attention = ExternalAttention(d_model=2304,S=8)
self.mlp = MLP_att_out(input_dim=self.backboon1.embed_dim * 3, output_dim=self.backboon1.embed_dim)
self.attention = CoordAtt(1,1,1)
self.norm1 = nn.LayerNorm(self.backboon1.embed_dim)
self.norm2 = nn.LayerNorm(self.backboon1.embed_dim)
self.norm3 = nn.LayerNorm(self.backboon1.embed_dim)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.backboon1.embed_dim*3, num_classes) if num_classes > 0 else nn.Identity()
#self.head = nn.Linear(196, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, img, mask):
x1 = self.backboon1(torch.cat((img, torch.zeros_like(img)), dim=1)) #TODO 是否用同一模型 还是不同 中间是否融合多尺度
x2 = self.backboon1(torch.cat((img*mask, torch.zeros_like(img)), dim=1)) #输出经过了归一化层 #小图
#自注意力+残差
x2_atten_mask = self.backboon1.atten_mask
x1_atten = self.self_atten_img(x1)
x2_atten = self.self_atten_mask(x2)
x1_out = self.norm1((x1 + x1_atten))
x2_out = self.norm2((x2 + x2_atten))
#交叉注意力
corss_out = self.norm3(self.cross_atten(x1, x2, x2_atten_mask))
#得到输出特征
out = torch.concat((x1_out, corss_out, x2_out), dim=2).permute(0, 2, 1)#12 2304 196
out = self.attention(out) #12 2304 196
#out_ = out.permute(0, 2, 1)
#out = self.mlp(out) # mlp #特征融合 2 196 768
# out = self.norm1(out) #这个好像不用 好像可以删掉
out = self.avgpool(out) # B C 1
out = torch.flatten(out, 1)
out = self.head(out)
return out
Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'.\label0601.pkl')
ALL_message2 = load_from_pkl(r'.\all_data_label.pkl')
a = ALL_message2['train']
a.update(ALL_message2['val'])
a.update(ALL_message2['test'])
ALL_message2 = a
LC_model_Paht = r'.\train_ADA_1.pkl'
LC_model = load_from_pkl(LC_model_Paht)['model'][0]
TF_model_Paht = r'.\tf_model.pkl'
TF_model = load_from_pkl(TF_model_Paht)['model']
DR_model = load_from_pkl(TF_model_Paht)['dr']
Model_Paht = r'./model_epoch120.pth.tar'
checkpoint = torch.load(Model_Paht, map_location='cpu')
classnet = my_model7(pretrained=False,num_classes=3,in_chans=1, img_size=224)
classnet.load_state_dict(checkpoint['model_dict'])
def resize3D(img, aimsize, order=3):
"""
:param img: 3D array
:param aimsize: list, one or three elements, like [256], or [256,56,56]
:return:
"""
_shape = img.shape
if len(aimsize) == 1:
aimsize = [aimsize[0] for _ in range(3)]
if aimsize[0] is None:
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size
if aimsize[1] is None:
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]), order=order) # resample for cube_size
if aimsize[2] is None:
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1), order=order) # resample for cube_size
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]),
order=order) # resample for cube_size
def get_lc():
global Current_name
lc_min = np.array([17,1,0,1,1,1,1,1 , 1 , 1])
lc_max = np.array([96 ,2, 3 ,2, 2,2 , 2 ,2 ,2 ,4])
lc_key = ['age', 'sex', 'time', 'postpartum', 'traumatism', 'diabetes', 'high_blood_pressure', 'cerebral_infarction', 'postoperation']
lc_all = [ALL_message2[Current_name][ii] for ii in lc_key]
site_ = Current_name.split('_',1)[-1]
if site_ == 'A_L': lc_all.append(1)
elif site_ == 'A_R': lc_all.append(2)
elif site_ == 'B_L': lc_all.append(3)
elif site_ == 'B_R': lc_all.append(4)
else: pass
lc_all = (np.array(lc_all)-lc_min)/(lc_max-lc_min+ 1e-12)
a = 5
return lc_all
def inference():
global Image_small_3D
global ROI_small_3D
model = classnet
data_3d = Image_small_3D
lc_data = get_lc()
lc_data = np.expand_dims(lc_data, axis=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
try:
#影像模型
with torch.no_grad():
all_probs = np.empty((0, 3))
for ii in tqdm(range(0, data_3d.shape[1]),total = data_3d.shape[1]):
data = torch.from_numpy(data_3d[:,ii,:])
roi = torch.from_numpy(ROI_small_3D[:,ii,:].astype(np.int8))
image = torch.unsqueeze(data, 0)
roi = torch.unsqueeze(torch.unsqueeze(roi, 0),0).to(device).float()
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in})
# Pre : Prediction Result
pre_probs = model(patch_data,roi)
pre_probs = torch.nn.functional.softmax(pre_probs, dim=1)
all_probs = np.concatenate((all_probs, pre_probs.cpu().numpy()), axis=0)
dl_prob = np.mean(all_probs, axis=0)
dl_prob = np.expand_dims(dl_prob, axis=0)
lc_prob = LC_model.predict_proba(lc_data)
feature = DR_model.transform(np.concatenate([dl_prob, lc_prob], axis=1))
final_p = TF_model.predict_proba(feature)
final_p = np.round(final_p[0], decimals=2)
return {'急性期': final_p[0], '亚急性期': final_p[1], '慢性期': final_p[2]}
except:
return ' '
def get_Image_reslice(input_file):
'''得到图像 返回随即层'''
global Image_3D
global Current_name
global Input_File
if isinstance(input_file, str):
input_file = input_file
else:
input_file = input_file.name
Input_File = input_file
print(input_file)
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_', 1)[0]
Image_3D = (np.max(Image_3D) - Image_3D) / (np.max(Image_3D) - np.min(Image_3D))
random_z = np.random.randint(0, Image_3D.shape[0])
image_slice_z = Image_3D[random_z, :, :]
random_y = np.random.randint(0, Image_3D.shape[1])
image_slice_y = Image_3D[:, random_y, :]
random_x = np.random.randint(0, Image_3D.shape[2])
image_slice_x = Image_3D[:, :, random_x]
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
return image_slice_z, \
image_slice_y, \
image_slice_x, random_z, random_y, random_x, '影像数据加载成功'
def get_ROI(input_file):
'''得到图像 返回随即层'''
global ROI_3D
if isinstance(input_file, str):
input_file = input_file
else:
input_file = input_file.name
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
ROI_3D = Image_3D
unique_elements = np.unique(ROI_3D)
a = 5
if np.where(unique_elements>1)[0]:
return '这个数据没有经过二值化'
else:
return '感兴趣区域加载成功'
def change_image_slice_x(slice):
image_slice = Image_3D[:, :, slice - 1]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) -image_slice)/(np.max(image_slice) - np.min(image_slice)))*255).astype(np.int16)
a = 5
return image_slice
def change_image_slice_y(slice):
image_slice = Image_3D[:, slice - 1, :]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(
np.int16)
return image_slice
def change_image_slice_z(slice):
image_slice = Image_3D[slice - 1, :, :]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(np.int16)
return image_slice
def get_medical_message():
global Current_name
if Current_name == None:
return '请先加载数据', ' '
else:
past = ALL_message[Current_name]['past']
now = ALL_message[Current_name]['now']
return past, now
def clear_all():
global Image_3D
global Current_name
Current_name = None
Image_3D = None
return np.ones((10, 10)), np.ones((10, 10)), np.ones((10, 10)), '', '', ' ',"尚未进行预处理 请先预处理再按“分期结果”按钮","尚未加载影像数据","尚未加载感兴趣区域"
def get_box(mask):
"""
:param mask: array,输入金标准图像
:return:
"""
# 得到boxx坐标
# 计算得到bbox,形式为[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
indexx = np.where(mask > 0.) # 返回坐标,几维就是几组坐标,坐标纵向看
dim0min, dim0max, dim1min, dim1max, dim2min, dim2max = [np.min(indexx[0]), np.max(indexx[0]),
np.min(indexx[1]), np.max(indexx[1]),
np.min(indexx[2]), np.max(indexx[2])]
bbox = [dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
return bbox
def arry_crop_3D(img,mask,ex_pix):
'''
得到小图,并外扩
:param img array 3D
:param mask array
:param ex_pix: list [a,b,c] 向两侧各自外扩多少 维度顺序与输入一致
:param z_waikuo:z轴是否外扩,默认第一维 务必提前确认 !!
'''
if len(ex_pix)==1:
ex_pix=[ex_pix[0] for _ in range(3)]
elif len(ex_pix) == 2:
print('如果z轴不外扩,第一维请输入0')
sys.exit()
[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] = get_box(mask)
#判断能否外扩
dim0,dim1,dim2 = img.shape
dim1_l_index = np.clip(dim1min-ex_pix[1],0 ,dim1) #dim1外扩后左边的坐标,若触碰边界,则尽量外扩至边界
dim1_r_index = np.clip(dim1max + ex_pix[1], 0, dim1)
dim2_l_index = np.clip(dim2min - ex_pix[2], 0, dim2)
dim2_r_index = np.clip(dim2max + ex_pix[2], 0, dim2)
fina_img = img[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]
fina_mask = mask[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]
if ex_pix[0]:
dim0_l_index = np.clip(dim0min - ex_pix[0], 0, dim0)
dim0_r_index = np.clip(dim0max + ex_pix[0], 0, dim0)
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
else: #不外扩
print('dim0 不外扩')
dim0_l_index = dim0min
dim0_r_index = dim0max
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
return fina_img, fina_mask
def data_pretreatment():
global Image_3D
global ROI_3D
global ROI_small_3D
global Image_small_3D
global Current_name
global Input_File
if Image_3D.all() ==None:
return '没有数据'
else:
roi = ROI_3D
# waikuo = [4, 4, 4]
# fina_img, fina_mask = arry_crop_3D(Image_3D,roi,waikuo)
cut_thre = np.percentile(fina_img, 99.9) # 直方图99.9%右侧值不要
fina_img[fina_img >= cut_thre] = cut_thre
z, y, x = fina_img.shape
fina_img = resize3D(fina_img, [224,y,224], order=3)
fina_roi = resize3D(roi, [224, y, 224], order=3)
fina_img = (np.max(fina_img)-fina_img)/(np.max(fina_img)-np.min(fina_img))
Image_small_3D = fina_img
ROI_small_3D = fina_roi
return '预处理结束'
class App:
def __init__(self):
self.demo = None
self.main()
def main(self):
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
# inputs="textbox", outputs=gr.Textbox(label="Greeting"))
# iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
inp = gr.inputs.File(label="Upload MRI file")
inp2 = gr.inputs.File(label="Upload ROI file")
with gr.Column(scale=1):
out8 = gr.Textbox(placeholder="尚未加载影像数据")
out9 = gr.Textbox(placeholder="尚未加载感兴趣区域")
with gr.Row():
btn1 = gr.Button("Upload MRI")
btn5 = gr.Button("Upload ROI")
clear = gr.Button(" Clear All")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Image(shape=(10, 10))
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out2 = gr.Image(shape=(10, 10))
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out3 = gr.Image(shape=(10, 10))
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
with gr.Tab("Medical Information"):
with gr.Row():
with gr.Column(scale=1):
btn2 = gr.Button(value="临床信息")
out4 = gr.Textbox(label="患病史")
out6 = gr.Textbox(label="现病史")
with gr.Column(scale=1):
btn4 = gr.Button("预处理")
out7 = gr.Textbox(placeholder="尚未进行预处理 请先预处理再按“分期结果”按钮", )
btn3 = gr.Button("分期结果")
out5 = gr.Label(num_top_classes=2, label='分期结果')
btn3.click(inference, inputs=None, outputs=out5)
btn4.click(data_pretreatment, inputs=None, outputs=out7)
btn2.click(get_medical_message, inputs=None, outputs=[out4, out6])
# demo = gr.Series(get_name, prepend_hello, append_nice)
btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3,out8])
btn5.click(get_ROI, inputs=inp2, outputs=out9)
slider3.change(change_image_slice_x, inputs=slider3, outputs=out3)
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5, out7,out8,out9], queue=True)
gr.Markdown('''# Examples''')
gr.Examples(
examples=[["./2239561_B_R_MRI.nii.gz"],
["./2239561_B_R_MRI.nii.gz"]],
inputs=inp,
outputs=[out1, out2, out3, slider1, slider2, slider3,out8],
fn=get_Image_reslice,
cache_examples=True,
)
gr.Examples(
examples=[["./2239561_B_R_ROI.nii.gz"],
["./2239561_B_R_ROI.nii.gz"]],
inputs=inp2,
outputs=out9,
fn=get_ROI,
cache_examples=True,
)
demo.queue(concurrency_count=6)
demo.launch(share=False)
app = App() |