File size: 42,579 Bytes
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
 
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94324d4
dea5bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector

from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation

import os
import random
import torch
import cv2
import uuid
from PIL import Image
import numpy as np
from pytorch_lightning import seed_everything

base_diffuser = "johnslegers/epic-diffusion-v1.1"

def prompts(name, description):
    def decorator(func):
        func.name = name
        func.description = description
        return func

    return decorator

def get_new_image_name(org_img_name, func_name="update"):
    head_tail = os.path.split(org_img_name)
    head = head_tail[0]
    tail = head_tail[1]
    name_split = tail.split('.')[0].split('_')
    this_new_uuid = str(uuid.uuid4())[0:4]
    if len(name_split) == 1:
        most_org_file_name = name_split[0]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    else:
        assert len(name_split) == 4
        most_org_file_name = name_split[3]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    return os.path.join(head, new_file_name)


class MaskFormer:
    def __init__(self, device):
        print(f"Initializing MaskFormer to {device}")
        self.device = device
        self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
        self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)

    def inference(self, image_path, text):
        threshold = 0.5
        min_area = 0.02
        padding = 20
        original_image = Image.open(image_path)
        image = original_image.resize((512, 512))
        inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
        with torch.no_grad():
            outputs = self.model(**inputs)
        mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
        area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
        if area_ratio < min_area:
            return None
        true_indices = np.argwhere(mask)
        mask_array = np.zeros_like(mask, dtype=bool)
        for idx in true_indices:
            padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
            mask_array[padded_slice] = True
        visual_mask = (mask_array * 255).astype(np.uint8)
        image_mask = Image.fromarray(visual_mask)
        return image_mask.resize(original_image.size)


class ImageEditing:
    def __init__(self, device):
        print(f"Initializing ImageEditing to {device}")
        self.device = device
        self.mask_former = MaskFormer(device=self.device)
        self.revision = 'fp16' if 'cuda' in device else None
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)

    @prompts(name="Remove Something From The Photo",
             description="useful when you want to remove and object or something from the photo "
                         "from its description or location. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the object need to be removed. ")
    def inference_remove(self, inputs):
        image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        return self.inference_replace(f"{image_path},{to_be_removed_txt},background")

    @prompts(name="Replace Something From The Photo",
             description="useful when you want to replace an object from the object description or "
                         "location with another object from its description. "
                         "The input to this tool should be a comma separated string of three, "
                         "representing the image_path, the object to be replaced, the object to be replaced with ")
    def inference_replace(self, inputs):
        image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
        original_image = Image.open(image_path)
        original_size = original_image.size
        mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
        updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
                                     mask_image=mask_image.resize((512, 512))).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="replace-something")
        updated_image = updated_image.resize(original_size)
        updated_image.save(updated_image_path)
        print(
            f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
            f"Output Image: {updated_image_path}")
        return updated_image_path


class InstructPix2Pix:
    def __init__(self, device):
        print(f"Initializing InstructPix2Pix to {device}")
        self.device = device
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
                                                                           safety_checker=None,
                                                                           torch_dtype=self.torch_dtype).to(device)
        self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)

    @prompts(name="Instruct Image Using Text",
             description="useful when you want to the style of the image to be like the text. "
                         "like: make it look like a painting. or make it like a robot. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the text. ")
    def inference(self, inputs):
        """Change style of image."""
        print("===>Starting InstructPix2Pix Inference")
        image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        original_image = Image.open(image_path)
        image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
        image.save(updated_image_path)
        print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Text2Image:
    def __init__(self, device):
        print(f"Initializing Text2Image to {device}")
        self.device = device
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.pipe = StableDiffusionPipeline.from_pretrained(base_diffuser,
                                                            torch_dtype=self.torch_dtype)
        self.pipe.to(device)
        self.a_prompt = 'digital art, highly detailed, intricate, sharp focus, Trending on Artstation, deviantart, unreal engine 5, 4K UHD image'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
                        'fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image From User Input Text",
             description="useful when you want to generate an image from a user input text and save it to a file. "
                         "like: generate an image of an object or something, or generate an image that includes some objects. "
                         "The input to this tool should be a string, representing the text used to generate image. ")
    def inference(self, text):
        image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
        prompt = text + ', ' + self.a_prompt
        image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
        image.save(image_filename)
        print(
            f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
        return image_filename


class ImageCaptioning:
    def __init__(self, device):
        print(f"Initializing ImageCaptioning to {device}")
        self.device = device
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        self.model = BlipForConditionalGeneration.from_pretrained(
            "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)

    @prompts(name="Get Photo Description",
             description="useful when you want to know what is inside the photo. receives image_path as input. "
                         "The input to this tool should be a string, representing the image_path. ")
    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
        return captions


class Image2Canny:
    def __init__(self, device):
        print("Initializing Image2Canny")
        self.low_threshold = 100
        self.high_threshold = 200

    @prompts(name="Edge Detection On Image",
             description="useful when you want to detect the edge of the image. "
                         "like: detect the edges of this image, or canny detection on image, "
                         "or perform edge detection on this image, or detect the canny image of this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        image = np.array(image)
        canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
        canny = canny[:, :, None]
        canny = np.concatenate([canny, canny, canny], axis=2)
        canny = Image.fromarray(canny)
        updated_image_path = get_new_image_name(inputs, func_name="edge")
        canny.save(updated_image_path)
        print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
        return updated_image_path


class CannyText2Image:
    def __init__(self, device):
        print(f"Initializing CannyText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
                            'fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Canny Image",
             description="useful when you want to generate a new real image from both the user description and a canny image."
                         " like: generate a real image of a object or something from this canny image,"
                         " or generate a new real image of a object or something from this edge image. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description. ")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="canny2image")
        image.save(updated_image_path)
        print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
              f"Output Text: {updated_image_path}")
        return updated_image_path


class Image2Line:
    def __init__(self, device):
        print("Initializing Image2Line")
        self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')

    @prompts(name="Line Detection On Image",
             description="useful when you want to detect the straight line of the image. "
                         "like: detect the straight lines of this image, or straight line detection on image, "
                         "or perform straight line detection on this image, or detect the straight line image of this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        mlsd = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="line-of")
        mlsd.save(updated_image_path)
        print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
        return updated_image_path


class LineText2Image:
    def __init__(self, device):
        print(f"Initializing LineText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
                            'fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Line Image",
             description="useful when you want to generate a new real image from both the user description "
                         "and a straight line image. "
                         "like: generate a real image of a object or something from this straight line image, "
                         "or generate a new real image of a object or something from this straight lines. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description. ")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="line2image")
        image.save(updated_image_path)
        print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
              f"Output Text: {updated_image_path}")
        return updated_image_path


class Image2Hed:
    def __init__(self, device):
        print("Initializing Image2Hed")
        self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')

    @prompts(name="Hed Detection On Image",
             description="useful when you want to detect the soft hed boundary of the image. "
                         "like: detect the soft hed boundary of this image, or hed boundary detection on image, "
                         "or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        hed = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
        hed.save(updated_image_path)
        print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
        return updated_image_path


class HedText2Image:
    def __init__(self, device):
        print(f"Initializing HedText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
                            'fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Soft Hed Boundary Image",
             description="useful when you want to generate a new real image from both the user description "
                         "and a soft hed boundary image. "
                         "like: generate a real image of a object or something from this soft hed boundary image, "
                         "or generate a new real image of a object or something from this hed boundary. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="hed2image")
        image.save(updated_image_path)
        print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Image2Scribble:
    def __init__(self, device):
        print("Initializing Image2Scribble")
        self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')

    @prompts(name="Sketch Detection On Image",
             description="useful when you want to generate a scribble of the image. "
                         "like: generate a scribble of this image, or generate a sketch from this image, "
                         "detect the sketch from this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        scribble = self.detector(image, scribble=True)
        updated_image_path = get_new_image_name(inputs, func_name="scribble")
        scribble.save(updated_image_path)
        print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
        return updated_image_path


class ScribbleText2Image:
    def __init__(self, device):
        print(f"Initializing ScribbleText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
                            'fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Sketch Image",
             description="useful when you want to generate a new real image from both the user description and "
                         "a scribble image or a sketch image. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
        image.save(updated_image_path)
        print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Image2Pose:
    def __init__(self, device):
        print("Initializing Image2Pose")
        self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

    @prompts(name="Pose Detection On Image",
             description="useful when you want to detect the human pose of the image. "
                         "like: generate human poses of this image, or generate a pose image from this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        pose = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="human-pose")
        pose.save(updated_image_path)
        print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
        return updated_image_path


class PoseText2Image:
    def __init__(self, device):
        print(f"Initializing PoseText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.num_inference_steps = 20
        self.seed = -1
        self.unconditional_guidance_scale = 9.0
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
                            ' fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Pose Image",
             description="useful when you want to generate a new real image from both the user description "
                         "and a human pose image. "
                         "like: generate a real image of a human from this human pose image, "
                         "or generate a new real image of a human from this pose. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pose2image")
        image.save(updated_image_path)
        print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Image2Seg:
    def __init__(self, device):
        print("Initializing Image2Seg")
        self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
        self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
                            [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
                            [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
                            [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
                            [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
                            [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
                            [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
                            [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
                            [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
                            [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
                            [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
                            [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
                            [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
                            [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
                            [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
                            [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
                            [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
                            [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
                            [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
                            [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
                            [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
                            [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
                            [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
                            [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
                            [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
                            [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
                            [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
                            [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
                            [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
                            [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
                            [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
                            [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
                            [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
                            [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
                            [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
                            [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
                            [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
                            [102, 255, 0], [92, 0, 255]]

    @prompts(name="Segmentation On Image",
             description="useful when you want to detect segmentations of the image. "
                         "like: segment this image, or generate segmentations on this image, "
                         "or perform segmentation on this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
        with torch.no_grad():
            outputs = self.image_segmentor(pixel_values)
        seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)  # height, width, 3
        palette = np.array(self.ade_palette)
        for label, color in enumerate(palette):
            color_seg[seg == label, :] = color
        color_seg = color_seg.astype(np.uint8)
        segmentation = Image.fromarray(color_seg)
        updated_image_path = get_new_image_name(inputs, func_name="segmentation")
        segmentation.save(updated_image_path)
        print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
        return updated_image_path


class SegText2Image:
    def __init__(self, device):
        print(f"Initializing SegText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
                                                          torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
                            ' fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Segmentations",
             description="useful when you want to generate a new real image from both the user description and segmentations. "
                         "like: generate a real image of a object or something from this segmentation image, "
                         "or generate a new real image of a object or something from these segmentations. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="segment2image")
        image.save(updated_image_path)
        print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Image2Depth:
    def __init__(self, device):
        print("Initializing Image2Depth")
        self.depth_estimator = pipeline('depth-estimation')

    @prompts(name="Predict Depth On Image",
             description="useful when you want to detect depth of the image. like: generate the depth from this image, "
                         "or detect the depth map on this image, or predict the depth for this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        depth = self.depth_estimator(image)['depth']
        depth = np.array(depth)
        depth = depth[:, :, None]
        depth = np.concatenate([depth, depth, depth], axis=2)
        depth = Image.fromarray(depth)
        updated_image_path = get_new_image_name(inputs, func_name="depth")
        depth.save(updated_image_path)
        print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
        return updated_image_path


class DepthText2Image:
    def __init__(self, device):
        print(f"Initializing DepthText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained(
            "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
                            ' fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Depth",
             description="useful when you want to generate a new real image from both the user description and depth image. "
                         "like: generate a real image of a object or something from this depth image, "
                         "or generate a new real image of a object or something from the depth map. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="depth2image")
        image.save(updated_image_path)
        print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class Image2Normal:
    def __init__(self, device):
        print("Initializing Image2Normal")
        self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
        self.bg_threhold = 0.4

    @prompts(name="Predict Normal Map On Image",
             description="useful when you want to detect norm map of the image. "
                         "like: generate normal map from this image, or predict normal map of this image. "
                         "The input to this tool should be a string, representing the image_path")
    def inference(self, inputs):
        image = Image.open(inputs)
        original_size = image.size
        image = self.depth_estimator(image)['predicted_depth'][0]
        image = image.numpy()
        image_depth = image.copy()
        image_depth -= np.min(image_depth)
        image_depth /= np.max(image_depth)
        x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
        x[image_depth < self.bg_threhold] = 0
        y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
        y[image_depth < self.bg_threhold] = 0
        z = np.ones_like(x) * np.pi * 2.0
        image = np.stack([x, y, z], axis=2)
        image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
        image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
        image = Image.fromarray(image)
        image = image.resize(original_size)
        updated_image_path = get_new_image_name(inputs, func_name="normal-map")
        image.save(updated_image_path)
        print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
        return updated_image_path


class NormalText2Image:
    def __init__(self, device):
        print(f"Initializing NormalText2Image to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.controlnet = ControlNetModel.from_pretrained(
            "fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_diffuser, controlnet=self.controlnet, safety_checker=None,
            torch_dtype=self.torch_dtype)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
                            ' fewer digits, cropped, worst quality, low quality'

    @prompts(name="Generate Image Condition On Normal Map",
             description="useful when you want to generate a new real image from both the user description and normal map. "
                         "like: generate a real image of a object or something from this normal map, "
                         "or generate a new real image of a object or something from the normal map. "
                         "The input to this tool should be a comma separated string of two, "
                         "representing the image_path and the user description")
    def inference(self, inputs):
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = f'{instruct_text}, {self.a_prompt}'
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
                          guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="normal2image")
        image.save(updated_image_path)
        print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
              f"Output Image: {updated_image_path}")
        return updated_image_path


class VisualQuestionAnswering:
    def __init__(self, device):
        print(f"Initializing VisualQuestionAnswering to {device}")
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
        self.model = BlipForQuestionAnswering.from_pretrained(
            "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)

    @prompts(name="Answer Question About The Image",
             description="useful when you need an answer for a question based on an image. "
                         "like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
                         "The input to this tool should be a comma separated string of two, representing the image_path and the question")
    def inference(self, inputs):
        image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        raw_image = Image.open(image_path).convert('RGB')
        inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
        out = self.model.generate(**inputs)
        answer = self.processor.decode(out[0], skip_special_tokens=True)
        print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
              f"Output Answer: {answer}")
        return answer