Spaces:
Build error
Build error
File size: 12,928 Bytes
6d314be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import argparse
import os
import sys
from argparse import Namespace
from tempfile import TemporaryDirectory
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.STAR.lib import utility
from models.Encoders import RotateModel
from models.Net import Net
from models.Net import iresnet100
from models.encoder4editing.utils.model_utils import setup_model, get_latents
from utils.bicubic import BicubicDownSample
from utils.train import image_grid, WandbLogger, seed_everything, toggle_grad
class MovingAverageLoss:
def __init__(self, weights: dict, alpha=0.02):
self.alpha = alpha
self.weights = weights
self.vals = {}
def reset(self):
self.vals = {}
def update(self, cur_vals):
for key, val in cur_vals.items():
self.vals[key] = self.alpha * val + (1 - self.alpha) * self.vals.get(key, val)
def calc_loss(self, losses):
loss = 0.
for key, val in losses.items():
loss += self.weights.get(key, 1) * val / self.vals.get(key, 1)
return loss
class Trainer:
def __init__(self,
model=None,
args=None,
optimizer=None,
scheduler=None,
train_dataloader=None,
test_dataloader=None,
logger=None
):
self.model = model
self.args = args
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
n_mlp=8, device=self.device))
self.e4e = setup_model('pretrained_models/encoder4editing/e4e_ffhq_encode.pt', 'cuda')[0]
self.arc_face = iresnet100()
self.arc_face.load_state_dict(torch.load("pretrained_models/ArcFace/backbone_r100.pth"))
self.arc_face.eval().cuda()
self.toArcface = T.Compose([
T.Resize((112, 112)),
T.Normalize(0.5, 0.5)
])
# init landmarks
config = utility.get_config(utility.landmarks_arg)
self.kp_extractor = utility.get_net(config)
model_path = utility.landmarks_arg.pretrained_weight
checkpoint = torch.load(model_path)
self.kp_extractor.load_state_dict(checkpoint["net"])
self.kp_extractor = self.kp_extractor.float().to('cuda')
self.kp_extractor.eval()
self.toLandmarks = T.Compose([
T.Resize((256, 256)),
T.Normalize(0.5, 0.5)
])
toggle_grad(self.arc_face, False)
toggle_grad(self.kp_extractor, False)
toggle_grad(self.net.generator, False)
toggle_grad(self.e4e.encoder, False)
self.downsample_512 = BicubicDownSample(factor=2)
self.downsample_256 = BicubicDownSample(factor=4)
self.downsample_128 = BicubicDownSample(factor=8)
self.MAL = MovingAverageLoss({'mse points to': 6, 'mse latents': 2})
self.best_loss = float('+inf')
def generate_key_points(self, batch):
_, _, landmarks = self.kp_extractor(self.toLandmarks(batch))
final_marks_2D = (landmarks[:, :76] + 1) / 2 * torch.tensor([256 - 1, 256 - 1]).to('cuda').view(1, 1, 2)
return final_marks_2D
@torch.no_grad()
def generate_latents(self, batch):
return get_latents(self.e4e, batch)
def save_model(self, name, save_online=True):
with TemporaryDirectory() as tmp_dir:
model_state_dict = self.model.state_dict()
# delete pretrained clip
for key in list(model_state_dict.keys()):
if key.startswith("clip_model."):
del model_state_dict[key]
torch.save({'model_state_dict': model_state_dict}, f'{tmp_dir}/{name}.pth')
self.logger.save(f'{tmp_dir}/{name}.pth', save_online)
def load_model(self, checkpoint_path):
self.model.load_state_dict(torch.load(checkpoint_path)['model_state_dict'], strict=False)
def calc_loss(self,
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
# key_point_loss
key_points_gen_to = self.generate_key_points(I_gen_to)
key_point_loss_to = F.mse_loss(key_points_gen_to, key_points_to)
# arcface loss
gen_embed = self.arc_face(self.toArcface(I_gen_to))
gt_embed = self.arc_face(self.toArcface(I_from))
arc_face_loss = 20 * (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()
losses = {
'mse points to': key_point_loss_to,
'arc face': arc_face_loss
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to, latent_in
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def calc_hair_loss(self,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
mse_latents = 300 * F.mse_loss(rotate_to, latents_to[:, :6])
losses = {
'mse latents': mse_latents
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def train_one_epoch(self):
self.model.to(self.device).train()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
dataloader_to = iter(self.train_dataloader)
for batch in tqdm(self.train_dataloader):
I_from, key_points_from, latents_from = map(lambda x: x.to(self.device), batch)
I_to, key_points_to, latents_to = map(lambda x: x.to(self.device), next(dataloader_to))
self.optimizer.zero_grad()
loss, info, _, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True
)
if self.args.use_hair_loss:
hair_loss, info2 = self.calc_hair_loss(
gen_latent,
latents_from
)
loss += hair_loss
info = sum_losses(info, info2)
loss.backward()
self.MAL.update(info)
total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
self.optimizer.step()
self.logger.next_step()
for key, val in info.items():
self.logger.log(key, val)
self.logger.log('grad', total_norm.item())
@torch.no_grad()
def validate(self):
self.model.to(self.device).eval()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
files = []
losses = {}
for batch in tqdm(self.test_dataloader):
I_from, key_points_from, latents_from, \
I_to, key_points_to, latents_to, = map(lambda x: x.to(self.device), batch)
bsz = I_from.size(0)
loss, info, I_gen_to, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True,
normalize=False
)
if args.use_hair_loss:
loss, info2, I_gen_to_rec = self.calc_hair_loss(
gen_latent,
latents_from,
ret_images=True,
normalize=False
)
losses = sum_losses(losses, info2)
else:
I_G_from, _ = self.net.generator([latents_from], input_is_latent=True, return_latents=False)
I_G_from_0_1 = ((I_G_from + 1) / 2)
I_gen_to_rec = self.downsample_256(I_G_from_0_1).clip(0, 1)
losses = sum_losses(losses, info)
for k in range(bsz):
files.append([I_from[k].cpu(), I_gen_to_rec[k].cpu(), I_gen_to[k].cpu(), I_to[k].cpu()])
for key, val in losses.items():
val /= len(self.test_dataloader)
self.logger.log(f'val {key}', val)
np.random.seed(1927)
idxs = np.random.choice(len(files), size=min(len(files), 100), replace=False)
images_to_log = [image_grid(list(map(T.functional.to_pil_image, files[idx])), 1, 4) for idx in idxs]
self.logger.log('val images', [wandb.Image(image) for image in images_to_log])
return losses['loss'] / len(self.test_dataloader)
def train_loop(self, epochs):
# self.validate()
for epoch in range(epochs):
self.train_one_epoch()
loss = self.validate()
self.save_model(f'rotate_{epoch}', save_online=False)
self.save_model('last')
if loss <= self.best_loss:
self.best_loss = loss
self.save_model(f'best', save_online=False)
class Rotate_dataset(Dataset):
def __init__(self, tensors_images, key_points, latents, is_test=False):
super().__init__()
self.tensors_images = tensors_images
self.key_points = key_points
self.latents = latents
self.is_test = is_test
def __len__(self):
return len(self.tensors_images)
def __get_elem__(self, idx):
return self.tensors_images[idx], self.key_points[idx], self.latents[idx]
def __getitem__(self, idx):
if self.is_test:
return *self.__get_elem__(idx), *self.__get_elem__(-idx)
else:
return self.__get_elem__(idx)
def main(args):
seed_everything()
data = list(torch.load(args.dataset).values())
X_train, X_test = train_test_split(list(zip(data[0], data[1], data[2])), test_size=512, random_state=42)
train_dataset = Rotate_dataset(*list(zip(*X_train)))
test_dataset = Rotate_dataset(*list(zip(*X_test)), is_test=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=True,
drop_last=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=False,
num_workers=4)
logger = WandbLogger(name=args.name_run, project='HairFast-Rotate')
logger.start_logging()
logger.save(__file__)
model = RotateModel()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.000001)
trainer = Trainer(model, args, optimizer, None, train_dataloader, test_dataloader, logger)
trainer.train_loop(1000)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Rotate trainer')
parser.add_argument('--name_run', type=str, default='test')
parser.add_argument('--dataset', type=str, default='input/rotate_dataset.pkl')
parser.add_argument('--use_hair_loss', action='store_false')
parser.add_argument('--batch_size', type=int, default=16)
args = parser.parse_args()
main(args)
|