Spaces:
Build error
Build error
File size: 15,978 Bytes
7a11626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
from pathlib import Path
from math import sin, pi, sqrt
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict
from guided_diffusion.script_util import (
create_model_and_diffusion,
model_and_diffusion_defaults,
NUM_CLASSES,
create_classifier,
classifier_defaults,
sr_create_model_and_diffusion,
sr_model_and_diffusion_defaults,
)
from adapt import ScoreAdapter
from my.registry import Registry
PRETRAINED_REGISTRY = Registry("pretrained")
device = torch.device("cuda")
def load_ckpt(path, **kwargs):
# with bf.BlobFile(path, "rb") as f:
# data = f.read()
return torch.load(path, **kwargs)
def pick_out_cfgs(src, target_ks):
return {k: src[k] for k in target_ks}
@PRETRAINED_REGISTRY.register()
def m_imgnet_64():
return dict(
attention_resolutions="32,16,8",
class_cond=True,
diffusion_steps=1000,
dropout=0.1,
image_size=64,
learn_sigma=True,
noise_schedule="cosine",
num_channels=192,
num_head_channels=64,
num_res_blocks=3,
resblock_updown=True,
use_new_attention_order=True,
use_fp16=True,
use_scale_shift_norm=True,
classifier_depth=4,
classifier_scale=1.0,
model_path="models/64x64_diffusion.pt",
classifier_path="models/64x64_classifier.pt",
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_128():
return dict(
attention_resolutions="32,16,8",
class_cond=True,
diffusion_steps=1000,
image_size=128,
learn_sigma=True,
noise_schedule="linear",
num_channels=256,
num_heads=4,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
classifier_scale=0.5,
model_path="models/128x128_diffusion.pt",
classifier_path="models/128x128_classifier.pt",
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_256():
return dict(
attention_resolutions="32,16,8",
class_cond=True,
diffusion_steps=1000,
image_size=256,
learn_sigma=True,
noise_schedule="linear",
num_channels=256,
num_head_channels=64,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
classifier_scale=1.0,
model_path="models/256x256_diffusion.pt",
classifier_path="models/256x256_classifier.pt"
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_256_uncond():
return dict(
attention_resolutions="32,16,8",
class_cond=False,
diffusion_steps=1000,
image_size=256,
learn_sigma=True,
noise_schedule="linear",
num_channels=256,
num_head_channels=64,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
classifier_scale=10.0,
model_path="models/256x256_diffusion_uncond.pt",
classifier_path="models/256x256_classifier.pt",
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_512():
return dict(
attention_resolutions="32,16,8",
class_cond=True,
diffusion_steps=1000,
image_size=512,
learn_sigma=True,
noise_schedule="linear",
num_channels=256,
num_head_channels=64,
num_res_blocks=2,
resblock_updown=True,
use_fp16=False,
use_scale_shift_norm=True,
classifier_scale=4.0,
model_path="models/512x512_diffusion.pt",
classifier_path="models/512x512_classifier.pt"
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_64_256(base_samples="64_samples.npz"):
return dict(
attention_resolutions="32,16,8",
class_cond=True,
diffusion_steps=1000,
large_size=256,
small_size=64,
learn_sigma=True,
noise_schedule="linear",
num_channels=192,
num_heads=4,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
model_path="models/64_256_upsampler.pt",
base_samples=base_samples,
)
@PRETRAINED_REGISTRY.register()
def m_imgnet_128_512(base_samples="128_samples.npz",):
return dict(
attention_resolutions="32,16",
class_cond=True,
diffusion_steps=1000,
large_size=512,
small_size=128,
learn_sigma=True,
noise_schedule="linear",
num_channels=192,
num_head_channels=64,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
model_path="models/128_512_upsampler.pt",
base_samples=base_samples,
)
@PRETRAINED_REGISTRY.register()
def m_lsun_256(category="bedroom"):
return dict(
attention_resolutions="32,16,8",
class_cond=False,
diffusion_steps=1000,
dropout=0.1,
image_size=256,
learn_sigma=True,
noise_schedule="linear",
num_channels=256,
num_head_channels=64,
num_res_blocks=2,
resblock_updown=True,
use_fp16=True,
use_scale_shift_norm=True,
model_path=f"models/lsun_{category}.pt"
)
def img_gen(specific_cfgs, num_samples=16, batch_size=16, load_only=False, ckpt_root=Path("")):
cfgs = EasyDict(
clip_denoised=True,
num_samples=num_samples,
batch_size=batch_size,
use_ddim=False,
model_path="",
classifier_path="",
classifier_scale=1.0,
)
cfgs.update(model_and_diffusion_defaults())
cfgs.update(classifier_defaults())
cfgs.update(specific_cfgs)
use_classifier_guidance = bool(cfgs.classifier_path)
class_aware = cfgs.class_cond or use_classifier_guidance
model, diffusion = create_model_and_diffusion(
**pick_out_cfgs(cfgs, model_and_diffusion_defaults().keys())
)
model.load_state_dict(
load_ckpt(str(ckpt_root / cfgs.model_path), map_location="cpu")
)
model.to(device)
if cfgs.use_fp16:
model.convert_to_fp16()
model.eval()
def model_fn(x, t, y=None):
return model(x, t, y if cfgs.class_cond else None)
classifier = None
cond_fn = None
if use_classifier_guidance:
classifier = create_classifier(
**pick_out_cfgs(cfgs, classifier_defaults().keys())
)
classifier.load_state_dict(
load_ckpt(str(ckpt_root / cfgs.classifier_path), map_location="cpu")
)
classifier.to(device)
if cfgs.classifier_use_fp16:
classifier.convert_to_fp16()
classifier.eval()
def cond_fn(x, t, y=None):
assert y is not None
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
logits = classifier(x_in, t)
log_probs = F.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), y.view(-1)]
return torch.autograd.grad(selected.sum(), x_in)[0] * cfgs.classifier_scale
if load_only:
return model, classifier
all_images = []
all_labels = []
while len(all_images) * cfgs.batch_size < cfgs.num_samples:
model_kwargs = {}
if class_aware:
classes = torch.randint(
low=0, high=NUM_CLASSES, size=(cfgs.batch_size,), device=device
)
model_kwargs["y"] = classes
sample_fn = (
diffusion.p_sample_loop if not cfgs.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model_fn,
(cfgs.batch_size, 3, cfgs.image_size, cfgs.image_size),
clip_denoised=cfgs.clip_denoised,
model_kwargs=model_kwargs,
cond_fn=cond_fn,
device=device,
progress=True
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
all_images.append(sample.cpu().numpy())
if class_aware:
all_labels.append(classes.cpu().numpy())
arr = np.concatenate(all_images, axis=0)
arr = arr[:cfgs.num_samples]
if class_aware:
all_labels = np.concatenate(all_labels, axis=0)
all_labels = all_labels[:cfgs.num_samples]
shape_str = "x".join([str(x) for x in arr.shape])
out_path = Path("./out") / f"samples_{shape_str}.npz"
np.savez(out_path, arr, all_labels)
def img_upsamp(specific_cfgs, num_samples=16, batch_size=16, load_only=False):
"""note that here the ckpt root is not configured properly; will break but easy fix"""
cfgs = EasyDict(
clip_denoised=True,
num_samples=num_samples,
batch_size=batch_size,
use_ddim=False,
base_samples="",
model_path="",
)
cfgs.update(sr_model_and_diffusion_defaults())
cfgs.update(specific_cfgs)
model, diffusion = sr_create_model_and_diffusion(
**pick_out_cfgs(cfgs, sr_model_and_diffusion_defaults().keys())
)
model.load_state_dict(load_ckpt(cfgs.model_path, map_location="cpu"))
model.to(device)
if cfgs.use_fp16:
model.convert_to_fp16()
model.eval()
if load_only:
return model
data = load_low_res_samples(
cfgs.base_samples, cfgs.batch_size, cfgs.class_cond
)
all_images = []
while len(all_images) * cfgs.batch_size < cfgs.num_samples:
model_kwargs = next(data)
model_kwargs = {k: v.to(device) for k, v in model_kwargs.items()}
samples = diffusion.p_sample_loop(
model,
(cfgs.batch_size, 3, cfgs.large_size, cfgs.large_size),
clip_denoised=cfgs.clip_denoised,
model_kwargs=model_kwargs,
progress=True
)
samples = ((samples + 1) * 127.5).clamp(0, 255).to(torch.uint8)
samples = samples.permute(0, 2, 3, 1)
samples = samples.contiguous()
all_images.append(samples.cpu().numpy())
arr = np.concatenate(all_images, axis=0)
arr = arr[: cfgs.num_samples]
shape_str = "x".join([str(x) for x in arr.shape])
out_path = Path("./out") / f"samples_{shape_str}.npz"
np.savez(out_path, arr)
def load_low_res_samples(base_samples, batch_size, class_cond):
obj = np.load(base_samples)
image_arr = obj["arr_0"]
if class_cond:
label_arr = obj["arr_1"]
buffer = []
label_buffer = []
while True:
for i in range(len(image_arr)):
buffer.append(image_arr[i])
if class_cond:
label_buffer.append(label_arr[i])
if len(buffer) == batch_size:
batch = torch.from_numpy(np.stack(buffer)).float()
batch = batch / 127.5 - 1.0
batch = batch.permute(0, 3, 1, 2)
res = {}
res["low_res"] = batch
if class_cond:
res["y"] = torch.from_numpy(np.stack(label_buffer))
yield res
buffer, label_buffer = [], []
def class_cond_info(imgnet_cat):
def rand_cond_fn(batch_size):
cats = torch.randint(
low=0, high=NUM_CLASSES, size=(batch_size,), device=device
)
return {"y": cats}
def class_specific_cond(batch_size):
cats = torch.tensor([imgnet_cat, ] * batch_size, device=device)
return {"y": cats}
if imgnet_cat == -1:
return rand_cond_fn
else:
return class_specific_cond
def _sqrt(x):
if isinstance(x, float):
return sqrt(x)
else:
assert isinstance(x, torch.Tensor)
return torch.sqrt(x)
class GuidedDDPM(ScoreAdapter):
def __init__(self, model, lsun_cat, imgnet_cat):
print(PRETRAINED_REGISTRY)
cfgs = PRETRAINED_REGISTRY.get(model)(
**({"category": lsun_cat} if model.startswith("m_lsun") else {})
)
self.unet, self.classifier = img_gen(
cfgs, load_only=True, ckpt_root=self.checkpoint_root() / "guided_ddpm"
)
H, W = cfgs['image_size'], cfgs['image_size']
self._data_shape = (3, H, W)
if cfgs['class_cond'] or (self.classifier is not None):
cond_func = class_cond_info(imgnet_cat)
else:
cond_func = lambda *args, **kwargs: {}
self.cond_func = cond_func
self._unet_is_cond = bool(cfgs['class_cond'])
noise_schedule = cfgs['noise_schedule']
assert noise_schedule in ("linear", "cosine")
self.M = 1000
if noise_schedule == "linear":
self.us = self.linear_us(self.M)
self._σ_min = 0.01
else:
self.us = self.cosine_us(self.M)
self._σ_min = 0.0064
self.noise_schedule = noise_schedule
self._device = next(self.unet.parameters()).device
def data_shape(self):
return self._data_shape
@property
def σ_max(self):
return self.us[0]
@property
def σ_min(self):
return self.us[-1]
@torch.no_grad()
def denoise(self, xs, σ, **model_kwargs):
N = xs.shape[0]
cond_t, σ = self.time_cond_vec(N, σ)
output = self.unet(
xs / _sqrt(1 + σ**2), cond_t, **model_kwargs
)
# not using the var pred
n_hat = torch.split(output, xs.shape[1], dim=1)[0]
Ds = xs - σ * n_hat
return Ds
def cond_info(self, batch_size):
return self.cond_func(batch_size)
def unet_is_cond(self):
return self._unet_is_cond
def use_cls_guidance(self):
return (self.classifier is not None)
@torch.no_grad()
def classifier_grad(self, xs, σ, ys):
N = xs.shape[0]
cond_t, σ = self.time_cond_vec(N, σ)
with torch.enable_grad():
x_in = xs.detach().requires_grad_(True)
logits = self.classifier(x_in, cond_t)
log_probs = F.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), ys.view(-1)]
grad = torch.autograd.grad(selected.sum(), x_in)[0]
grad = grad * (1 / sqrt(1 + σ**2))
return grad
def snap_t_to_nearest_tick(self, t):
j = np.abs(t - self.us).argmin()
return self.us[j], j
def time_cond_vec(self, N, σ):
if isinstance(σ, float):
σ, j = self.snap_t_to_nearest_tick(σ) # σ might change due to snapping
cond_t = (self.M - 1) - j
cond_t = torch.tensor([cond_t] * N, device=self.device)
return cond_t, σ
else:
assert isinstance(σ, torch.Tensor)
σ = σ.reshape(-1).cpu().numpy()
σs = []
js = []
for elem in σ:
_σ, _j = self.snap_t_to_nearest_tick(elem)
σs.append(_σ)
js.append((self.M - 1) - _j)
cond_t = torch.tensor(js, device=self.device)
σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
return cond_t, σs
@staticmethod
def cosine_us(M=1000):
assert M == 1000
def α_bar(j):
return sin(pi / 2 * j / (M * (0.008 + 1))) ** 2
us = [0, ]
for j in reversed(range(0, M)): # [M-1, 0], inclusive
u_j = sqrt(((us[-1] ** 2) + 1) / (max(α_bar(j) / α_bar(j+1), 0.001)) - 1)
us.append(u_j)
us = np.array(us)
us = us[1:]
us = us[::-1]
return us
@staticmethod
def linear_us(M=1000):
assert M == 1000
β_start = 0.0001
β_end = 0.02
βs = np.linspace(β_start, β_end, M, dtype=np.float64)
αs = np.cumprod(1 - βs)
us = np.sqrt((1 - αs) / αs)
us = us[::-1]
return us
|