File size: 1,696 Bytes
7a11626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import copy
import torch.nn as nn

class EMAHelper(object):
    def __init__(self, mu=0.999):
        self.mu = mu
        self.shadow = {}

    def register(self, module):
        if isinstance(module, nn.DataParallel):
            module = module.module
        for name, param in module.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()

    def update(self, module):
        if isinstance(module, nn.DataParallel):
            module = module.module
        for name, param in module.named_parameters():
            if param.requires_grad:
                self.shadow[name].data = (1. - self.mu) * param.data + self.mu * self.shadow[name].data

    def ema(self, module):
        if isinstance(module, nn.DataParallel):
            module = module.module
        for name, param in module.named_parameters():
            if param.requires_grad:
                param.data.copy_(self.shadow[name].data)

    def ema_copy(self, module):
        if isinstance(module, nn.DataParallel):
            inner_module = module.module
            module_copy = type(inner_module)(inner_module.config).to(inner_module.config.device)
            module_copy.load_state_dict(inner_module.state_dict())
            module_copy = nn.DataParallel(module_copy)
        else:
            module_copy = type(module)(module.config).to(module.config.device)
            module_copy.load_state_dict(module.state_dict())
        # module_copy = copy.deepcopy(module)
        self.ema(module_copy)
        return module_copy

    def state_dict(self):
        return self.shadow

    def load_state_dict(self, state_dict):
        self.shadow = state_dict