File size: 6,630 Bytes
7a11626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from torch import nn

from ldm.data.personalized import per_img_token_list
from transformers import CLIPTokenizer
from functools import partial

DEFAULT_PLACEHOLDER_TOKEN = ["*"]

PROGRESSIVE_SCALE = 2000

def get_clip_token_for_string(tokenizer, string):
    batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
                               return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
    tokens = batch_encoding["input_ids"]
    assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"

    return tokens[0, 1]

def get_bert_token_for_string(tokenizer, string):
    token = tokenizer(string)
    assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"

    token = token[0, 1]

    return token

def get_embedding_for_clip_token(embedder, token):
    return embedder(token.unsqueeze(0))[0, 0]


class EmbeddingManager(nn.Module):
    def __init__(
            self,
            embedder,
            placeholder_strings=None,
            initializer_words=None,
            per_image_tokens=False,
            num_vectors_per_token=1,
            progressive_words=False,
            **kwargs
    ):
        super().__init__()

        self.string_to_token_dict = {}
        
        self.string_to_param_dict = nn.ParameterDict()

        self.initial_embeddings = nn.ParameterDict() # These should not be optimized

        self.progressive_words = progressive_words
        self.progressive_counter = 0

        self.max_vectors_per_token = num_vectors_per_token

        if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
            self.is_clip = True
            get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
            get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
            token_dim = 768
        else: # using LDM's BERT encoder
            self.is_clip = False
            get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
            get_embedding_for_tkn = embedder.transformer.token_emb
            token_dim = 1280

        if per_image_tokens:
            placeholder_strings.extend(per_img_token_list)

        for idx, placeholder_string in enumerate(placeholder_strings):
            
            token = get_token_for_string(placeholder_string)

            if initializer_words and idx < len(initializer_words):
                init_word_token = get_token_for_string(initializer_words[idx])

                with torch.no_grad():
                    init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())

                token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
                self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
            else:
                token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
            
            self.string_to_token_dict[placeholder_string] = token
            self.string_to_param_dict[placeholder_string] = token_params

    def forward(
            self,
            tokenized_text,
            embedded_text,
    ):
        b, n, device = *tokenized_text.shape, tokenized_text.device

        for placeholder_string, placeholder_token in self.string_to_token_dict.items():

            placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)

            if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
                placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
                embedded_text[placeholder_idx] = placeholder_embedding
            else: # otherwise, need to insert and keep track of changing indices
                if self.progressive_words:
                    self.progressive_counter += 1
                    max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
                else:
                    max_step_tokens = self.max_vectors_per_token

                num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)

                placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))

                if placeholder_rows.nelement() == 0:
                    continue

                sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
                sorted_rows = placeholder_rows[sort_idx]

                for idx in range(len(sorted_rows)):
                    row = sorted_rows[idx]
                    col = sorted_cols[idx]

                    new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
                    new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]

                    embedded_text[row]  = new_embed_row
                    tokenized_text[row] = new_token_row

        return embedded_text

    def save(self, ckpt_path):
        torch.save({"string_to_token": self.string_to_token_dict,
                    "string_to_param": self.string_to_param_dict}, ckpt_path)

    def load(self, ckpt_path):
        ckpt = torch.load(ckpt_path, map_location='cpu')

        self.string_to_token_dict = ckpt["string_to_token"]
        self.string_to_param_dict = ckpt["string_to_param"]

    def get_embedding_norms_squared(self):
        all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim
        param_norm_squared = (all_params * all_params).sum(axis=-1)              # num_placeholders

        return param_norm_squared

    def embedding_parameters(self):
        return self.string_to_param_dict.parameters()

    def embedding_to_coarse_loss(self):
        
        loss = 0.
        num_embeddings = len(self.initial_embeddings)

        for key in self.initial_embeddings:
            optimized = self.string_to_param_dict[key]
            coarse = self.initial_embeddings[key].clone().to(optimized.device)

            loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings

        return loss