File size: 6,487 Bytes
12f2e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from datasets import load_from_disk
from multi_token.model_utils import MultiTaskType
from multi_token.training import ModelArguments
from multi_token.inference import load_trained_lora_model
from multi_token.data_tools import encode_chat
import evaluate
import random
import bert_score
from tqdm import tqdm

from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.meteor_score import meteor_score as meteor_scorer
from nltk.tokenize import wordpunct_tokenize
import json
from bert_score import score
from tqdm.auto import tqdm

import yaml

scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)


PRETRAIN_PHRASES_OLD = [
    "Describe the audio in detail"
]

PRETRAIN_PHRASES = [
    "What is happening in the given music <sound>?",
    "Describe the sound. <sound>",
    "Describe the music. <sound>",
    "<sound> Provide a description of the music.",
    "<sound> Provide a description of the sound.",
    "Can you interpret <sound>?",
    "Please explain what's happening in <sound>",
    "What does <sound> represent?",
    "Could you describe <sound> for me?",
    "What's the content of <sound>?",
    "Can you depict <sound>?",
    "What is <sound>?",
    "In the music clip, <sound>, what is happening?",
    "Provide a description of the music. <sound>",
    "Provide a description of the sound. <sound>",
    "Provide a caption for the sound. <sound>",
    "Provide a caption for the music. <sound>",
]

random.seed(1234)

@dataclass
class ServeArguments(ModelArguments):
    port: int = field(default=8080)
    host: str = field(default="0.0.0.0")
    load_bits: int = field(default=16)
    max_new_tokens: int = field(default=128)
    temperature: float = field(default=0.01)

def generate(input_json):
    encoded_dict = encode_chat(input_json, tokenizer, model.modalities)
    with torch.inference_mode():
        output_ids = model.generate(
            input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
            max_new_tokens=serve_args.max_new_tokens,
            use_cache=True,
            do_sample=True,
            temperature=serve_args.temperature,
            modality_inputs={
                m.name: [encoded_dict[m.name]] for m in model.modalities
            },
        )
    outputs = tokenizer.decode(
        output_ids[0, encoded_dict["input_ids"].shape[0]:],
        skip_special_tokens=True,
    ).strip()
    return {"output": outputs}

def evaluate(candidates, mult_reference):
    rouge_score, bleu_score, bleu4_score, meteor_score = 0, 0, 0, 0
    for ref, cand in tqdm(zip(mult_reference, candidates), total=len(mult_reference)):
        rouge_score += scorer.score(ref, cand)['rougeL'].recall
        cand_split = wordpunct_tokenize(cand)
        ref_split = wordpunct_tokenize(ref)
        bleu4_score += sentence_bleu([ref], cand, weights=(0.0, 0.0, 0.0, 1.0))
        bleu_score += sentence_bleu([ref], cand)
        meteor_score += meteor_scorer([ref_split], cand_split)
    rouge_score, bleu_score, bleu4_score, meteor_score = rouge_score / (len(candidates)), bleu_score / (len(candidates)), bleu4_score / (len(candidates)), meteor_score / (len(candidates))
    P, R, F1 = score(candidates, mult_reference, lang="en", verbose=True)
    bert_score = R.mean().item()
    #print(f"Model: {model_name}")
    print(f"BLEU Score: {bleu_score}")
    print(f"BLEU-4 Score: {bleu4_score}")
    print(f"METEOR Score: {meteor_score}")
    print(f"ROUGE Score: {rouge_score}")
    print(f"BERT Score: {bert_score}")

if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)
    parser = transformers.HfArgumentParser((ServeArguments,))
    serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
    dataset_path = "/data/musicbench_multitoken_official_split/val"
    ds = load_from_disk(dataset_path)
    shuffled_ds = ds.shuffle(seed=1234)
    model, tokenizer = load_trained_lora_model(
        model_name_or_path=serve_args.model_name_or_path,
        model_lora_path=serve_args.model_lora_path,
        load_bits=serve_args.load_bits,
        use_multi_task=MultiTaskType(serve_args.use_multi_task),
        tasks_config=serve_args.tasks_config
    )

    predictions = []
    references = []
    content_phrase = random.choice(PRETRAIN_PHRASES)
#    for data_point_id in range(len(ds)):
    print("len(ds)", len(ds))
    for data_point_id in tqdm(range(100)):
#    for data_point_id in tqdm(range(6831)):
        data_point = shuffled_ds[data_point_id]
        input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]}
        output_json = generate(input_json)
#        print("Prediction ", output_json["output"])
#        print("Reference ", data_point["messages"][1]["content"])
#        print()
#        print()
        predictions.append(output_json["output"])
        references.append(data_point["messages"][1]["content"])

    pairs = {"predictions": predictions, "references": references}

    evaluate(predictions, references)

#    with open('/experiments/captioning/mert_tasks_separate_backbone_train_001_ft/checkpoint_1985_test/val_2.yaml', 'w') as file:
#        yaml.dump(pairs, file, default_flow_style=False)

    # Load evaluation metrics
    # bleu = evaluate.load("bleu")
    # meteor = evaluate.load("meteor")
    # rouge = evaluate.load("rouge")
    
    # Compute BLEU scores
    # bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4)
    # print(bleu_results)
    #bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4

    # Compute METEOR score
    # meteor_results = meteor.compute(predictions=predictions, references=references)
    # meteor_score = meteor_results["meteor"]

    # Compute ROUGE-L score
    # rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"])
#    rouge_l_score = rouge_results["rougeL"].mid.fmeasure
    # print(rouge_results)

    # Compute BERT-Score
    # P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True)
    # bert_score_f1 = F1.mean().item()

    # Print results
    #print(f"BLEU Score: {bleu_score}")
    # print(f"METEOR Score: {meteor_score}")
#    print(f"ROUGE-L Score: {rouge_l_score}")
    # print(f"BERT-Score F1: {bert_score_f1}")