File size: 5,517 Bytes
12f2e48
 
 
 
 
 
 
 
 
4401dfb
 
12f2e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from typing import List
import argparse
import re
import glob
import json

from datasets import load_dataset
from datasets import Dataset

from sonicverse.constants import ROLE_ASSISTANT, ROLE_USER
from sonicverse.modalities.document_gte import (
    split_text_into_documents,
)

TEMP_TOKEN = "<<<TEMP-TOKEN>>>"

# regex, doc, prompt
LONG_ALPACA_REGEXES = [
    (
        r"Below is a paper. Memorize the paper and answer my question after the paper.\n The paper begins. \n ([\s\S]+) \n Now the paper ends. \n([\s\S]+)",
        lambda m: m.group(1),
        lambda m: f"Read the paper {TEMP_TOKEN}. {m.group(2)}",
    ),
    (
        r"Below is a paper. Memorize the material and answer my question after the paper.\n([\s\S]+)\n Now the material ends. ([\s\S]+)",
        lambda m: m.group(1),
        lambda m: f"Read the paper {TEMP_TOKEN}. {m.group(2)}",
    ),
    (
        r"There are two papers. Memorize them and answer my question after the paper.\n The first paper begins. \n ([\s\S]+) Now the second paper ends.([\s\S]+)",
        lambda m: m.group(1),
        lambda m: f"Read the papers {TEMP_TOKEN}. {m.group(2)}",
    ),
    (
        r"Below is some paragraphs in the book, ([\s\S]+?). Memorize the content and answer my question after the book.\n([\s\S]+) \n Now the material ends.([\s\S]+)",
        lambda m: m.group(2),
        lambda m: f"Read the book {m.group(1)} {TEMP_TOKEN}. {m.group(3)}",
    ),
]

# regex, doc, prompt, answer
LONG_DATA_REGEXES = [
    (
        r"Write a high-quality answer for the given question using only the provided search results \(some of which might be irrelevant\).([\s\S]+)Question: ([\s\S]+)Answer: ([\s\S]+)\nLong Answer: ([\s\S]+)",
        lambda m: m.group(1).strip(),
        lambda m: f"Write a high-quality answer for the given question using only the provided search results {TEMP_TOKEN}. {m.group(2).strip()}",
        lambda m: m.group(4).strip(),
    ),
    (
        r"([\s\S]+)\nQ: ([\s\S]+)\nA: ([\s\S]+)",
        lambda m: m.group(1).strip(),
        lambda m: f"Read the following book {TEMP_TOKEN}. {m.group(2).strip()}",
        lambda m: m.group(3).strip(),
    ),
]


def _write_long_alpaca_convo(row, max_document_chunks) -> List:
    doc_text = None
    prompt = None
    for regex, get_doc, get_prompt in LONG_ALPACA_REGEXES:
        match = re.match(regex, row["instruction"])
        if match:
            doc_text = get_doc(match)
            prompt = get_prompt(match).replace("Question: ", "")
            break

    if doc_text is None and row["input"]:
        doc_text = row["input"]
        prompt = row["instruction"] + f" {TEMP_TOKEN}"

    if doc_text is None:
        raise ValueError("No document found")

    docs = split_text_into_documents(doc_text)
    if len(docs) > max_document_chunks:
        raise ValueError("Document too long")
    example = {
        "id": "longalpaca-" + str(hash(row["instruction"])),
        "documents": docs,
    }
    example["messages"] = [
        {
            "role": ROLE_USER,
            "content": prompt.replace(TEMP_TOKEN, "<document>" * len(docs)),
        },
        {
            "role": ROLE_ASSISTANT,
            "content": row["output"].replace("Answer: ", ""),
        },
    ]
    return example


def _write_long_data_collections_convo(row, max_document_chunks) -> List:
    doc_text = None
    prompt = None
    answer = None
    for regex, get_doc, get_prompt, get_answer in LONG_DATA_REGEXES:
        match = re.match(regex, row["text"])
        if match:
            doc_text = get_doc(match)
            prompt = get_prompt(match)
            answer = get_answer(match).replace(" .", ".")
            break

    if not doc_text or not prompt or not answer:
        raise ValueError("No document found")

    docs = split_text_into_documents(doc_text)
    if len(docs) > max_document_chunks:
        raise ValueError("Document too long")
    example = {
        "id": "longdatacollection-" + str(hash(row["text"])),
        "documents": docs,
    }
    example["messages"] = [
        {
            "role": ROLE_USER,
            "content": prompt.replace(TEMP_TOKEN, "<document>" * len(docs)),
        },
        {
            "role": ROLE_ASSISTANT,
            "content": answer,
        },
    ]
    return example


def main(args):
    long_alpaca = load_dataset(args.long_alpaca_path, "train")["train"]

    def gen():
        for row in long_alpaca:
            try:
                yield _write_long_alpaca_convo(row, args.max_document_chunks)
            except ValueError:
                continue
        for long_collection_fn in glob.iglob(args.long_collections_glob):
            with open(long_collection_fn) as f:
                for line in f:
                    row = json.loads(line)
                    try:
                        yield _write_long_data_collections_convo(
                            row, args.max_document_chunks
                        )
                    except ValueError:
                        continue

    ds = Dataset.from_generator(gen)
    ds = ds.shuffle(seed=42)
    ds.save_to_disk(args.output_folder)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--long_alpaca_path", type=str, default="Yukang/LongAlpaca-12k")
    parser.add_argument("--long_collections_glob", type=str)
    parser.add_argument("-o", "--output_folder", type=str)
    parser.add_argument("-c", "--max_document_chunks", type=int, default=256)
    args = parser.parse_args()
    main(args)