Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,308 Bytes
3c1f2a9 3387a76 4596dac ed317eb 5bce909 4fa82ee 5bce909 89c77a3 5bce909 89c77a3 5bce909 89c77a3 5bce909 f81b71e b583efa 5bce909 b583efa 5bce909 b583efa 5bce909 89c77a3 5bce909 b583efa 5bce909 b583efa 5bce909 b583efa cdf44e6 5bce909 b583efa f81b71e 5bce909 b583efa 5bce909 b583efa 5bce909 89c77a3 b583efa 5bce909 b583efa c6d1d61 b583efa c6d1d61 b583efa c6d1d61 89c77a3 5bce909 89c77a3 5bce909 f81b71e 5bce909 f81b71e 5bce909 89c77a3 5bce909 f81b71e 4d296a7 f101c4e 4d296a7 5bce909 c6d1d61 5bce909 f81b71e 5bce909 c6d1d61 b583efa c6d1d61 5bce909 30c0cfe 5bce909 30c0cfe 5bce909 addbeeb 5bce909 30c0cfe f81b71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")
try:
import spaces # HF Spaces SDK
except Exception:
class _DummySpaces:
def GPU(self, *_, **__):
def deco(fn): return fn
return deco
spaces = _DummySpaces()
@spaces.GPU(duration=10)
def gpu_probe(a: int = 1, b: int = 1):
return a + b
@spaces.GPU(duration=10)
def gpu_echo(x: str = "ok"):
return x
# ================= Standard imports =================
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional, List, Any
import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download
# Runtime hints (safe on CPU)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
SPACE_ROOT = Path(__file__).parent.resolve()
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
REPO_URL = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
# ================ Repo clone AT STARTUP (so examples show immediately) ================
def ensure_repo() -> Path:
if not REPO_DIR.exists():
subprocess.run(
["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
check=True,
)
if REPO_DIR.as_posix() not in sys.path:
sys.path.append(REPO_DIR.as_posix())
return REPO_DIR
# Clone now so examples are available immediately
ensure_repo()
# ================ Weights: still lazy (download at first run) ================
_weights_path: Optional[Path] = None
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
"""Download/resolve weights lazily (keeps startup fast)."""
global _weights_path
if _weights_path is None:
if progress: progress(0.10, desc="Downloading model weights (first run)")
wp = hf_hub_download(
repo_id=WEIGHTS_REPO,
filename=WEIGHTS_FILE,
local_dir=str(CACHE_DIR),
local_dir_use_symlinks=False,
force_download=False,
resume_download=True,
)
_weights_path = Path(wp)
return _weights_path
# ================== Helpers ==================
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
# Ensure shape (samples, channels)
if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
wav = wav.T
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
sf.write(path.as_posix(), wav, sr)
def read_audio(path: str) -> Tuple[np.ndarray, int]:
wav, sr = sf.read(path, always_2d=False)
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
return wav, sr
def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
"""
Only support infer_single.py variants.
Expected primary flags: --ckpt --input --prompt --output
"""
return [
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
]
def run_sonicmaster_cli(
input_wav_path: Path,
prompt: str,
out_path: Path,
progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
"""Run inference via subprocess; returns (ok, message). Uses ONLY infer_single.py."""
# π§ Ensure a non-empty prompt for the CLI
prompt = (prompt or "").strip() or "Enhance the input audio"
if progress: progress(0.14, desc="Preparing inference")
ckpt = get_weights_path(progress=progress)
script = REPO_DIR / "infer_single.py"
if not script.exists():
return False, "infer_single.py not found in the SonicMaster repo."
py = sys.executable or "python3"
env = os.environ.copy()
last_err = ""
for cidx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), 1):
try:
if progress:
progress(min(0.25 + 0.10 * cidx, 0.70), desc=f"Running infer_single.py (try {cidx})")
res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
if out_path.exists() and out_path.stat().st_size > 0:
if progress: progress(0.88, desc="Post-processing output")
return True, (res.stdout or "Inference completed.").strip()
last_err = "infer_single.py finished but produced no output file."
except subprocess.CalledProcessError as e:
snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
last_err = snippet if snippet else f"infer_single.py failed with return code {e.returncode}."
except Exception as e:
import traceback
last_err = f"Unexpected error with infer_single.py: {e}\n{traceback.format_exc()}"
return False, last_err or "All candidate commands failed."
# ============ GPU path (ZeroGPU) ============
@spaces.GPU(duration=60) # safe cap for ZeroGPU tiers
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
try:
import torch # noqa: F401
except Exception:
pass
from pathlib import Path as _P
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)
def _has_cuda() -> bool:
try:
import torch
return torch.cuda.is_available()
except Exception:
return False
# ================== Examples @ STARTUP ==================
PROMPTS_10 = [
"Increase the clarity of this song by emphasizing treble frequencies.",
"Make this song sound more boomy by amplifying the low end bass frequencies.",
"Can you make this sound louder, please?",
"Make the audio smoother and less distorted.",
"Improve the balance in this song.",
"Disentangle the left and right channels to give this song a stereo feeling.",
"Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
"Raise the level of the vocals, please.",
"Increase the clarity of this song by emphasizing treble frequencies.",
"Please, dereverb this audio.",
]
def build_startup_examples() -> List[List[Any]]:
"""Build 10 (audio_path, prompt) pairs from repo at import time."""
wav_dir = REPO_DIR / "samples" / "inputs"
wav_paths = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
ex = []
for i, p in enumerate(wav_paths[:10]):
pr = PROMPTS_10[i] if i < len(PROMPTS_10) else PROMPTS_10[-1]
ex.append([p.as_posix(), pr])
return ex
STARTUP_EXAMPLES = build_startup_examples()
# ================== Main callback ==================
def enhance_audio_ui(
audio_path: str,
prompt: str,
progress=gr.Progress(track_tqdm=True),
):
"""
Returns (audio, message). On failure, audio=None and message=error text.
"""
try:
# π§ normalize/fallback so --prompt is always passed
prompt = (prompt or "").strip()
if not prompt:
prompt = "Enhance the input audio"
if not audio_path:
raise gr.Error("Please upload or select an input audio file.")
wav, sr = read_audio(audio_path)
tmp_in = SPACE_ROOT / "tmp_in.wav"
tmp_out = SPACE_ROOT / "tmp_out.wav"
if tmp_out.exists():
try: tmp_out.unlink()
except Exception: pass
if progress: progress(0.06, desc="Preparing audio")
save_temp_wav(wav, sr, tmp_in)
use_gpu_call = USE_ZEROGPU or _has_cuda()
if progress: progress(0.12, desc="Starting inference")
if use_gpu_call:
ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
else:
ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)
if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
out_wav, out_sr = read_audio(tmp_out.as_posix())
return (out_sr, out_wav), (msg or "Done.")
else:
return None, (msg or "Inference failed without a specific error message.")
except gr.Error as e:
return None, str(e)
except Exception as e:
import traceback
return None, f"Unexpected error: {e}\n{traceback.format_exc()}"
# ================== Gradio UI ==================
with gr.Blocks(title="SonicMaster β Text-Guided Restoration & Mastering", fill_height=True) as _demo:
gr.Markdown(
"## π§ SonicMaster\n"
"Upload audio or pick an example, write a prompt (or leave blank), then click **Enhance**.\n"
"If left blank, we'll use a generic prompt: _Enhance the input audio_.\n"
"- The enhanced audio may take a few seconds to appear after processing. Please wait until the output loads.\n"
"- Please note that if it is the first run, HF will need to download model weights which takes a while.\n"
"\n"
"If you enjoy this model, please cite [our paper](https://huggingface.co/papers/2508.03448). "
)
with gr.Row():
with gr.Column(scale=1):
in_audio = gr.Audio(label="Input Audio", type="filepath")
prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten vocals. (Optional)")
run_btn = gr.Button("π Enhance", variant="primary")
# Show 10 audio+prompt examples immediately at startup
if STARTUP_EXAMPLES:
gr.Examples(
examples=STARTUP_EXAMPLES,
inputs=[in_audio, prompt],
label="Sample Inputs (10)",
)
else:
gr.Markdown("> β οΈ No sample .wav files found in `samples/inputs/`.")
with gr.Column(scale=1):
out_audio = gr.Audio(label="Enhanced Audio (output)")
status = gr.Textbox(label="Status / Messages", interactive=False, lines=8)
run_btn.click(
fn=enhance_audio_ui,
inputs=[in_audio, prompt],
outputs=[out_audio, status],
concurrency_limit=1,
)
# Expose all common names the supervisor might look for
demo = _demo.queue(max_size=16)
iface = demo
app = demo
# Local debugging only
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |