File size: 10,308 Bytes
3c1f2a9
 
 
3387a76
4596dac
ed317eb
5bce909
 
 
 
 
 
4fa82ee
5bce909
 
 
 
 
 
 
 
89c77a3
5bce909
 
 
89c77a3
5bce909
 
 
 
 
 
89c77a3
5bce909
 
 
 
 
 
 
 
 
 
f81b71e
b583efa
 
 
 
 
 
 
 
 
5bce909
b583efa
 
 
 
 
5bce909
b583efa
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
89c77a3
5bce909
b583efa
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
b583efa
 
 
 
5bce909
b583efa
cdf44e6
5bce909
 
 
 
 
 
 
 
b583efa
f81b71e
 
 
5bce909
 
 
b583efa
 
 
5bce909
 
 
 
 
b583efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bce909
 
89c77a3
b583efa
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b583efa
c6d1d61
 
 
 
 
 
 
 
 
 
 
 
 
b583efa
 
 
 
 
 
 
 
 
c6d1d61
b583efa
c6d1d61
89c77a3
5bce909
 
 
 
89c77a3
5bce909
 
 
 
f81b71e
 
5bce909
f81b71e
 
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c77a3
5bce909
 
 
f81b71e
 
4d296a7
f101c4e
4d296a7
 
5bce909
 
c6d1d61
5bce909
f81b71e
5bce909
c6d1d61
b583efa
 
 
 
 
 
 
 
 
c6d1d61
 
5bce909
 
30c0cfe
5bce909
 
 
 
 
 
30c0cfe
5bce909
 
 
 
addbeeb
5bce909
30c0cfe
f81b71e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")

try:
    import spaces  # HF Spaces SDK
except Exception:
    class _DummySpaces:
        def GPU(self, *_, **__):
            def deco(fn): return fn
            return deco
    spaces = _DummySpaces()


@spaces.GPU(duration=10)
def gpu_probe(a: int = 1, b: int = 1):
    return a + b

@spaces.GPU(duration=10)
def gpu_echo(x: str = "ok"):
    return x

# ================= Standard imports =================
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional, List, Any

import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download

# Runtime hints (safe on CPU)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"

SPACE_ROOT   = Path(__file__).parent.resolve()
REPO_DIR     = SPACE_ROOT / "SonicMasterRepo"
REPO_URL     = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR    = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)

# ================ Repo clone AT STARTUP (so examples show immediately) ================
def ensure_repo() -> Path:
    if not REPO_DIR.exists():
        subprocess.run(
            ["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
            check=True,
        )
    if REPO_DIR.as_posix() not in sys.path:
        sys.path.append(REPO_DIR.as_posix())
    return REPO_DIR

# Clone now so examples are available immediately
ensure_repo()

# ================ Weights: still lazy (download at first run) ================
_weights_path: Optional[Path] = None
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
    """Download/resolve weights lazily (keeps startup fast)."""
    global _weights_path
    if _weights_path is None:
        if progress: progress(0.10, desc="Downloading model weights (first run)")
        wp = hf_hub_download(
            repo_id=WEIGHTS_REPO,
            filename=WEIGHTS_FILE,
            local_dir=str(CACHE_DIR),
            local_dir_use_symlinks=False,
            force_download=False,
            resume_download=True,
        )
        _weights_path = Path(wp)
    return _weights_path

# ================== Helpers ==================
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
    # Ensure shape (samples, channels)
    if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
        wav = wav.T
    if wav.dtype == np.float64:
        wav = wav.astype(np.float32)
    sf.write(path.as_posix(), wav, sr)

def read_audio(path: str) -> Tuple[np.ndarray, int]:
    wav, sr = sf.read(path, always_2d=False)
    if wav.dtype == np.float64:
        wav = wav.astype(np.float32)
    return wav, sr

def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
    """
    Only support infer_single.py variants.
    Expected primary flags: --ckpt --input --prompt --output
    """
    return [
        [py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],

    ]

def run_sonicmaster_cli(
    input_wav_path: Path,
    prompt: str,
    out_path: Path,
    progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
    """Run inference via subprocess; returns (ok, message). Uses ONLY infer_single.py."""
    # πŸ”§ Ensure a non-empty prompt for the CLI
    prompt = (prompt or "").strip() or "Enhance the input audio"

    if progress: progress(0.14, desc="Preparing inference")
    ckpt = get_weights_path(progress=progress)

    script = REPO_DIR / "infer_single.py"
    if not script.exists():
        return False, "infer_single.py not found in the SonicMaster repo."

    py = sys.executable or "python3"
    env = os.environ.copy()

    last_err = ""
    for cidx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), 1):
        try:
            if progress:
                progress(min(0.25 + 0.10 * cidx, 0.70), desc=f"Running infer_single.py (try {cidx})")
            res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
            if out_path.exists() and out_path.stat().st_size > 0:
                if progress: progress(0.88, desc="Post-processing output")
                return True, (res.stdout or "Inference completed.").strip()
            last_err = "infer_single.py finished but produced no output file."
        except subprocess.CalledProcessError as e:
            snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
            last_err = snippet if snippet else f"infer_single.py failed with return code {e.returncode}."
        except Exception as e:
            import traceback
            last_err = f"Unexpected error with infer_single.py: {e}\n{traceback.format_exc()}"
    return False, last_err or "All candidate commands failed."

# ============ GPU path (ZeroGPU) ============
@spaces.GPU(duration=60)  # safe cap for ZeroGPU tiers
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
    try:
        import torch  # noqa: F401
    except Exception:
        pass
    from pathlib import Path as _P
    return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)

def _has_cuda() -> bool:
    try:
        import torch
        return torch.cuda.is_available()
    except Exception:
        return False

# ================== Examples @ STARTUP ==================
PROMPTS_10 = [
    "Increase the clarity of this song by emphasizing treble frequencies.",
    "Make this song sound more boomy by amplifying the low end bass frequencies.",
    "Can you make this sound louder, please?",
    "Make the audio smoother and less distorted.",
    "Improve the balance in this song.",
    "Disentangle the left and right channels to give this song a stereo feeling.",
    "Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
    "Raise the level of the vocals, please.",
    "Increase the clarity of this song by emphasizing treble frequencies.",
    "Please, dereverb this audio.",
]

def build_startup_examples() -> List[List[Any]]:
    """Build 10 (audio_path, prompt) pairs from repo at import time."""
    wav_dir = REPO_DIR / "samples" / "inputs"
    wav_paths = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
    ex = []
    for i, p in enumerate(wav_paths[:10]):
        pr = PROMPTS_10[i] if i < len(PROMPTS_10) else PROMPTS_10[-1]
        ex.append([p.as_posix(), pr])
    return ex

STARTUP_EXAMPLES = build_startup_examples()

# ================== Main callback ==================
def enhance_audio_ui(
    audio_path: str,
    prompt: str,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Returns (audio, message). On failure, audio=None and message=error text.
    """
    try:
        # πŸ”§ normalize/fallback so --prompt is always passed
        prompt = (prompt or "").strip()
        if not prompt:
            prompt = "Enhance the input audio"

        if not audio_path:
            raise gr.Error("Please upload or select an input audio file.")

        wav, sr = read_audio(audio_path)
        tmp_in  = SPACE_ROOT / "tmp_in.wav"
        tmp_out = SPACE_ROOT / "tmp_out.wav"
        if tmp_out.exists():
            try: tmp_out.unlink()
            except Exception: pass

        if progress: progress(0.06, desc="Preparing audio")
        save_temp_wav(wav, sr, tmp_in)

        use_gpu_call = USE_ZEROGPU or _has_cuda()
        if progress: progress(0.12, desc="Starting inference")

        if use_gpu_call:
            ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
        else:
            ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)

        if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
            out_wav, out_sr = read_audio(tmp_out.as_posix())
            return (out_sr, out_wav), (msg or "Done.")
        else:
            return None, (msg or "Inference failed without a specific error message.")

    except gr.Error as e:
        return None, str(e)
    except Exception as e:
        import traceback
        return None, f"Unexpected error: {e}\n{traceback.format_exc()}"

# ================== Gradio UI ==================
with gr.Blocks(title="SonicMaster – Text-Guided Restoration & Mastering", fill_height=True) as _demo:
    gr.Markdown(
        "## 🎧 SonicMaster\n"
        "Upload audio or pick an example, write a prompt (or leave blank), then click **Enhance**.\n"
        "If left blank, we'll use a generic prompt: _Enhance the input audio_.\n"
        "- The enhanced audio may take a few seconds to appear after processing. Please wait until the output loads.\n"
        "- Please note that if it is the first run, HF will need to download model weights which takes a while.\n"
        "\n"
        "If you enjoy this model, please cite [our paper](https://huggingface.co/papers/2508.03448). "
    )
    with gr.Row():
        with gr.Column(scale=1):
            in_audio = gr.Audio(label="Input Audio", type="filepath")
            prompt   = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten vocals. (Optional)")
            run_btn  = gr.Button("πŸš€ Enhance", variant="primary")

            # Show 10 audio+prompt examples immediately at startup
            if STARTUP_EXAMPLES:
                gr.Examples(
                    examples=STARTUP_EXAMPLES,
                    inputs=[in_audio, prompt],
                    label="Sample Inputs (10)",
                )
            else:
                gr.Markdown("> ⚠️ No sample .wav files found in `samples/inputs/`.")

        with gr.Column(scale=1):
            out_audio = gr.Audio(label="Enhanced Audio (output)")
            status    = gr.Textbox(label="Status / Messages", interactive=False, lines=8)

    run_btn.click(
        fn=enhance_audio_ui,
        inputs=[in_audio, prompt],
        outputs=[out_audio, status],
        concurrency_limit=1,
    )

# Expose all common names the supervisor might look for
demo = _demo.queue(max_size=16)
iface = demo
app = demo

# Local debugging only
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)