File size: 7,124 Bytes
c5aee4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
from groq import Groq
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import os
from langchain_groq import ChatGroq
from secret_key import groq_api_key
import pandas as pd
from langchain.schema import (AIMessage, HumanMessage, SystemMessage)
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
import time, random
from templates import choose_template, extract_template, interview_feedback_template, interview_question_template
from utils import select_questions
st.set_page_config(page_icon='rex.png', layout='wide')
st.title("Interview Round : Skill Up Your Interviewing Prowess")
category = st.selectbox("Which type of questions do you want to practice?",
['Technical', 'Behavioural', 'Culture Fit', 'STAR'], index=None)
while category is None:
st.info('Please select question category')
st.stop()
if category:
data = select_questions(category=category)
while category is None:
st.markdown('Please select question category')
if not st.session_state.groq_key:
st.info("Please add your API key to continue")
st.stop()
if not st.session_state["Resume Info"]:
st.info("Please upload your Resume")
st.stop()
if not st.session_state["Job Description"]:
st.info("Please add your job description")
st.stop()
os.environ['GROQ_API_KEY'] = st.session_state.groq_key
# Initialize Groq client with Mixtral model
client = ChatGroq(
groq_api_key=groq_api_key,
model_name="mixtral-8x7b-32768"
)
### Extract previously asked Questions from the history
memory = ConversationBufferMemory(
memory_key="history",
return_messages=True
)
system_template_e = extract_template
system_message_prompt_e = SystemMessagePromptTemplate.from_template(system_template_e)
human_template_e = "{text}"
human_message_prompt_e = HumanMessagePromptTemplate.from_template(human_template_e)
chat_prompt_e = ChatPromptTemplate.from_messages([system_message_prompt_e, human_message_prompt_e])
extract_chain = LLMChain(llm=client, prompt=chat_prompt_e)
### Choose question based on action
system_template_c = choose_template
system_message_prompt_c = SystemMessagePromptTemplate.from_template(system_template_c)
human_template_c = "{text}"
human_message_prompt_c = HumanMessagePromptTemplate.from_template(human_template_c)
chat_prompt_c = ChatPromptTemplate.from_messages([system_message_prompt_c, human_message_prompt_c])
choose_chain = LLMChain(llm=client, prompt=chat_prompt_c)
### Asking the questions
system_template_q = interview_question_template
system_message_prompt_q = SystemMessagePromptTemplate.from_template(system_template_q)
human_template_q = "{text}"
human_message_prompt_q = HumanMessagePromptTemplate.from_template(human_template_q)
chat_prompt_q = ChatPromptTemplate.from_messages([system_message_prompt_q, human_message_prompt_q])
question_chain = LLMChain(llm=client, prompt=chat_prompt_q)
### Provide Feedback
system_template_f = interview_feedback_template
system_message_prompt_f = SystemMessagePromptTemplate.from_template(system_template_f)
human_template_f = "{text}"
human_message_prompt_f = HumanMessagePromptTemplate.from_template(human_template_f)
chat_prompt_f = ChatPromptTemplate.from_messages([system_message_prompt_f, human_message_prompt_f])
feedback_chain = LLMChain(llm=client, prompt=chat_prompt_f)
if "messages" not in st.session_state:
st.session_state.messages = []
if "action" not in st.session_state:
st.session_state.action = "Next"
if "history" not in st.session_state:
st.session_state.history = []
if "questions" not in st.session_state:
st.session_state.questions = []
for message in st.session_state.messages:
if message['role'] == "user":
name = "user"
avatar = "user.png"
else:
name = "assistant"
avatar = "rex.png"
with st.chat_message(name, avatar=avatar):
st.markdown(f"{message['content']}")
if inp := st.chat_input("Type here"):
with st.chat_message("user", avatar='user.png'):
st.markdown(inp)
st.session_state['messages'].append({'role': 'user', 'content': inp})
question = None
if st.session_state.messages != [] and st.session_state.messages[-1]['role'] == "feedback":
option = st.radio(label="Which question would you like to do?", options=["Next", "Repeat"], index=None)
while option is None:
pass
st.session_state.action = option
if st.session_state.action == "Next" or "Repeat" and (
st.session_state.messages == [] or st.session_state.messages[-1]['role'] == "feedback"):
if st.session_state.questions != []:
extracts = extract_chain.run(history=st.session_state.questions, text="")
else:
extracts = "No previous Questions"
chosen_q = choose_chain.run(action=st.session_state.action, questions=extracts, data=data, text="",
details=st.session_state["Resume Info"], description=st.session_state['Job Description'])
response = question_chain.run(question=chosen_q, history=st.session_state.history[-1:], text=inp,
details=st.session_state["Resume Info"])
with st.chat_message("assistant", avatar='rex.png'):
message_placeholder = st.empty()
full_response = ""
for chunk in response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# st.markdown(response)
st.session_state.action = "Feedback"
st.session_state['messages'].append({'role': 'interviewer', 'content': response})
memory.save_context({"input": ""}, {"output": response})
st.session_state['history'].append(memory.buffer_as_messages[-2:])
st.session_state['questions'].append({'Question': response})
question = chosen_q
if st.session_state.messages[-1]['role'] == "user" and st.session_state.action == "Feedback":
feedback = feedback_chain.run(question=question, response=inp, history=st.session_state.history[-1:], text=inp,
asked=st.session_state.messages[-2]['content'])
with st.chat_message("assistant", avatar='rex.png'):
message_placeholder = st.empty()
full_response = ""
for chunk in feedback.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# st.markdown(feedback)
st.session_state['messages'].append({'role': 'feedback', 'content': feedback})
memory.save_context({"input": inp}, {"output": feedback})
st.session_state['history'].append(memory.buffer_as_messages[-2:])
st.button("Continue")
|