File size: 7,025 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm
import math


class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]


class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__ >= '1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
                                   kernel_size=3, padding=padding, padding_mode='circular', bias=False)
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_in', nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
        return x


class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float()
                    * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()


class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        minute_size = 4
        hour_size = 24
        weekday_size = 7
        day_size = 32
        month_size = 13

        Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
        if freq == 't':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)

    def forward(self, x):
        x = x.long()
        minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
            self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:, :, 3])
        weekday_x = self.weekday_embed(x[:, :, 2])
        day_x = self.day_embed(x[:, :, 1])
        month_x = self.month_embed(x[:, :, 0])

        return hour_x + weekday_x + day_x + month_x + minute_x


class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {'h': 4, 't': 5, 's': 6,
                    'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3, '15min' : 5}
        d_inp = freq_map[freq]
        self.embed = nn.Linear(d_inp, d_model, bias=False)

    def forward(self, x):
        return self.embed(x)


class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        if x_mark is None:
            x = self.value_embedding(x) + self.position_embedding(x)
        else:
            x = self.value_embedding(
                x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
        return self.dropout(x)


class DataEmbedding_inverted(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_inverted, self).__init__()
        self.value_embedding = nn.Linear(c_in, d_model)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = x.permute(0, 2, 1)
        # x: [Batch Variate Time]
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1))
        # x: [Batch Variate d_model]
        return self.dropout(x)


class DataEmbedding_wo_pos(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_wo_pos, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(x) + self.temporal_embedding(x_mark)
        return self.dropout(x)


class PatchEmbedding(nn.Module):
    def __init__(self, d_model, patch_len, stride, padding, dropout):
        super(PatchEmbedding, self).__init__()
        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch_layer = nn.ReplicationPad1d((0, padding))

        # Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
        self.value_embedding = nn.Linear(patch_len, d_model, bias=False)

        # Positional embedding
        self.position_embedding = PositionalEmbedding(d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # do patching
        n_vars = x.shape[1]
        x = self.padding_patch_layer(x)
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
        # Input encoding
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x), n_vars