File size: 7,483 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from data_provider.data_factory import data_provider
from exp.exp_basic import Exp_Basic
from utils.tools import EarlyStopping, adjust_learning_rate, cal_accuracy
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np
import pdb

warnings.filterwarnings('ignore')


class Exp_Classification(Exp_Basic):
    def __init__(self, args):
        super(Exp_Classification, self).__init__(args)

    def _build_model(self):
        # model input depends on data
        train_data, train_loader = self._get_data(flag='TRAIN')
        test_data, test_loader = self._get_data(flag='TEST')
        self.args.seq_len = max(train_data.max_seq_len, test_data.max_seq_len)
        self.args.pred_len = 0
        self.args.enc_in = train_data.feature_df.shape[1]
        self.args.num_class = len(train_data.class_names)
        # model init
        model = self.model_dict[self.args.model].Model(self.args).float()
        if self.args.use_multi_gpu and self.args.use_gpu:
            model = nn.DataParallel(model, device_ids=self.args.device_ids)
        return model

    def _get_data(self, flag):
        data_set, data_loader = data_provider(self.args, flag)
        return data_set, data_loader

    def _select_optimizer(self):
        model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
        return model_optim

    def _select_criterion(self):
        criterion = nn.CrossEntropyLoss()
        return criterion

    def vali(self, vali_data, vali_loader, criterion):
        total_loss = []
        preds = []
        trues = []
        self.model.eval()
        with torch.no_grad():
            for i, (batch_x, label, padding_mask) in enumerate(vali_loader):
                batch_x = batch_x.float().to(self.device)
                padding_mask = padding_mask.float().to(self.device)
                label = label.to(self.device)

                outputs = self.model(batch_x, padding_mask, None, None)

                pred = outputs.detach().cpu()
                loss = criterion(pred, label.long().squeeze().cpu())
                total_loss.append(loss)

                preds.append(outputs.detach())
                trues.append(label)

        total_loss = np.average(total_loss)

        preds = torch.cat(preds, 0)
        trues = torch.cat(trues, 0)
        probs = torch.nn.functional.softmax(preds)  # (total_samples, num_classes) est. prob. for each class and sample
        predictions = torch.argmax(probs, dim=1).cpu().numpy()  # (total_samples,) int class index for each sample
        trues = trues.flatten().cpu().numpy()
        accuracy = cal_accuracy(predictions, trues)

        self.model.train()
        return total_loss, accuracy

    def train(self, setting):
        train_data, train_loader = self._get_data(flag='TRAIN')
        vali_data, vali_loader = self._get_data(flag='TEST')
        test_data, test_loader = self._get_data(flag='TEST')

        path = os.path.join(self.args.checkpoints, setting)
        if not os.path.exists(path):
            os.makedirs(path)

        time_now = time.time()

        train_steps = len(train_loader)
        early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)

        model_optim = self._select_optimizer()
        criterion = self._select_criterion()

        for epoch in range(self.args.train_epochs):
            iter_count = 0
            train_loss = []

            self.model.train()
            epoch_time = time.time()

            for i, (batch_x, label, padding_mask) in enumerate(train_loader):
                iter_count += 1
                model_optim.zero_grad()

                batch_x = batch_x.float().to(self.device)
                padding_mask = padding_mask.float().to(self.device)
                label = label.to(self.device)

                outputs = self.model(batch_x, padding_mask, None, None)
                loss = criterion(outputs, label.long().squeeze(-1))
                train_loss.append(loss.item())

                if (i + 1) % 100 == 0:
                    print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
                    speed = (time.time() - time_now) / iter_count
                    left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
                    print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
                    iter_count = 0
                    time_now = time.time()

                loss.backward()
                nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=4.0)
                model_optim.step()

            print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
            train_loss = np.average(train_loss)
            vali_loss, val_accuracy = self.vali(vali_data, vali_loader, criterion)
            test_loss, test_accuracy = self.vali(test_data, test_loader, criterion)

            print(
                "Epoch: {0}, Steps: {1} | Train Loss: {2:.3f} Vali Loss: {3:.3f} Vali Acc: {4:.3f} Test Loss: {5:.3f} Test Acc: {6:.3f}"
                .format(epoch + 1, train_steps, train_loss, vali_loss, val_accuracy, test_loss, test_accuracy))
            early_stopping(-val_accuracy, self.model, path)
            if early_stopping.early_stop:
                print("Early stopping")
                break
            if (epoch + 1) % 5 == 0:
                adjust_learning_rate(model_optim, epoch + 1, self.args)

        best_model_path = path + '/' + 'checkpoint.pth'
        self.model.load_state_dict(torch.load(best_model_path))

        return self.model

    def test(self, setting, test=0):
        test_data, test_loader = self._get_data(flag='TEST')
        if test:
            print('loading model')
            self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))

        preds = []
        trues = []
        folder_path = './test_results/' + setting + '/'
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)

        self.model.eval()
        with torch.no_grad():
            for i, (batch_x, label, padding_mask) in enumerate(test_loader):
                batch_x = batch_x.float().to(self.device)
                padding_mask = padding_mask.float().to(self.device)
                label = label.to(self.device)

                outputs = self.model(batch_x, padding_mask, None, None)

                preds.append(outputs.detach())
                trues.append(label)

        preds = torch.cat(preds, 0)
        trues = torch.cat(trues, 0)
        print('test shape:', preds.shape, trues.shape)

        probs = torch.nn.functional.softmax(preds)  # (total_samples, num_classes) est. prob. for each class and sample
        predictions = torch.argmax(probs, dim=1).cpu().numpy()  # (total_samples,) int class index for each sample
        trues = trues.flatten().cpu().numpy()
        accuracy = cal_accuracy(predictions, trues)

        # result save
        folder_path = './results/' + setting + '/'
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)

        print('accuracy:{}'.format(accuracy))
        file_name='result_classification.txt'
        f = open(os.path.join(folder_path,file_name), 'a')
        f.write(setting + "  \n")
        f.write('accuracy:{}'.format(accuracy))
        f.write('\n')
        f.write('\n')
        f.close()
        return