Spaces:
Runtime error
Runtime error
File size: 46,843 Bytes
e2ebf5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
import os
import numpy as np
import torch
import open3d as o3d
from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
from pytorch3d.transforms import quaternion_apply, quaternion_invert
from sugar.sugar_scene.gs_model import GaussianSplattingWrapper, fetchPly
from sugar.sugar_scene.sugar_model import SuGaR, convert_refined_sugar_into_gaussians
from sugar.sugar_scene.sugar_optimizer import OptimizationParams, SuGaROptimizer
from sugar.sugar_scene.sugar_densifier import SuGaRDensifier
from sugar.sugar_utils.loss_utils import ssim, l1_loss, l2_loss
from rich.console import Console
import time
def refined_training(args):
CONSOLE = Console(width=120)
# ====================Parameters====================
num_device = args.gpu
detect_anomaly = False
# -----Data parameters-----
downscale_resolution_factor = 1 # 2, 4
# -----Model parameters-----
use_eval_split = True
n_skip_images_for_eval_split = 8
freeze_gaussians = False
initialize_from_trained_3dgs = False # True or False
if initialize_from_trained_3dgs:
prune_at_start = False
start_pruning_threshold = 0.5
no_rendering = freeze_gaussians
n_points_at_start = None # If None, takes all points in the SfM point cloud
learnable_positions = True # True in 3DGS
use_same_scale_in_all_directions = False # Should be False
sh_levels = 4
# -----Radiance Mesh-----
triangle_scale=1.
# -----Rendering parameters-----
compute_color_in_rasterizer = False # TODO: Try True
# -----Optimization parameters-----
# Learning rates and scheduling
num_iterations = 15_000 # Changed
spatial_lr_scale = None
position_lr_init=0.00016
position_lr_final=0.0000016
position_lr_delay_mult=0.01
position_lr_max_steps=30_000
feature_lr=0.0025
opacity_lr=0.05
scaling_lr=0.005
rotation_lr=0.001
# Densifier and pruning
use_densifier = True
if use_densifier:
heavy_densification = False
if initialize_from_trained_3dgs:
densify_from_iter = 500 + 99999 # 500 # Maybe reduce this, since we have a better initialization?
densify_until_iter = 7000 - 7000 # 7000
else:
densify_from_iter = 500 # 500 # Maybe reduce this, since we have a better initialization?
densify_until_iter = 7000 # 7000
if heavy_densification:
densification_interval = 50 # 100
opacity_reset_interval = 3000 # 3000
densify_grad_threshold = 0.0001 # 0.0002
densify_screen_size_threshold = 20
prune_opacity_threshold = 0.005
densification_percent_distinction = 0.01
else:
densification_interval = 100 # 100
opacity_reset_interval = 3000 # 3000
densify_grad_threshold = 0.0002 # 0.0002
densify_screen_size_threshold = 20
prune_opacity_threshold = 0.005
densification_percent_distinction = 0.01
# Data processing and batching
n_images_to_use_for_training = -1 # If -1, uses all images
train_num_images_per_batch = 1 # 1 for full images
# Loss functions
loss_function = 'l1+dssim' # 'l1' or 'l2' or 'l1+dssim'
if loss_function == 'l1+dssim':
dssim_factor = 0.2
# Regularization
enforce_entropy_regularization = False
if enforce_entropy_regularization:
start_entropy_regularization_from = 7000
end_entropy_regularization_at = 9000 # TODO: Change
entropy_regularization_factor = 0.1
regularize_sdf = False
if regularize_sdf:
beta_mode = 'average' # 'learnable', 'average' or 'weighted_average'
start_sdf_regularization_from = 9000
regularize_sdf_only_for_gaussians_with_high_opacity = False
if regularize_sdf_only_for_gaussians_with_high_opacity:
sdf_regularization_opacity_threshold = 0.5
use_sdf_estimation_loss = True
enforce_samples_to_be_on_surface = False
if use_sdf_estimation_loss or enforce_samples_to_be_on_surface:
sdf_estimation_mode = 'sdf' # 'sdf' or 'density'
sdf_estimation_factor = 0.2 # 0.1 or 0.2?
samples_on_surface_factor = 0.2 # 0.05
squared_sdf_estimation_loss = False
squared_samples_on_surface_loss = False
normalize_by_sdf_std = False # False
start_sdf_estimation_from = 9000 # 7000
sample_only_in_gaussians_close_to_surface = True # True?
close_gaussian_threshold = 2. # 2.
backpropagate_gradients_through_depth = True # True
use_sdf_better_normal_loss = True
if use_sdf_better_normal_loss:
start_sdf_better_normal_from = 9000
sdf_better_normal_factor = 0.2 # 0.1 or 0.2?
sdf_better_normal_gradient_through_normal_only = True
density_factor = 1. / 16. # 1. / 16.
if (use_sdf_estimation_loss or enforce_samples_to_be_on_surface) and sdf_estimation_mode == 'density':
density_factor = 1.
density_threshold = 1. # 0.5 * density_factor
n_samples_for_sdf_regularization = 1_000_000 # 300_000
sdf_sampling_scale_factor = 1.5
sdf_sampling_proportional_to_volume = False
bind_to_surface_mesh = True
if bind_to_surface_mesh:
learn_surface_mesh_positions = True
learn_surface_mesh_opacity = True
learn_surface_mesh_scales = True
# n_gaussians_per_surface_triangle=6 # 1, 3, 4 or 6
use_surface_mesh_laplacian_smoothing_loss = False
if use_surface_mesh_laplacian_smoothing_loss:
surface_mesh_laplacian_smoothing_method = "uniform" # "cotcurv", "cot", "uniform"
surface_mesh_laplacian_smoothing_factor = 5. # 0.1
use_surface_mesh_normal_consistency_loss = True
if use_surface_mesh_normal_consistency_loss:
pass
# surface_mesh_normal_consistency_factor = 0.1 # 0.1
use_densifier = False
densify_from_iter = 999_999
densify_until_iter = 0
# position_lr_init=0.00016 * 0.01
# position_lr_final=0.0000016 * 0.01
# scaling_lr=0.005
else:
surface_mesh_to_bind_path = None
if regularize_sdf:
regularize = True
regularity_knn = 16 # 8 until now
# regularity_knn = 8
regularity_samples = -1 # Retry with 1000, 10000
reset_neighbors_every = 500 # 500 until now
regularize_from = 7000 # 0 until now
start_reset_neighbors_from = 7000+1 # 0 until now (should be equal to regularize_from + 1?)
prune_when_starting_regularization = False
else:
regularize = False
regularity_knn = 0
if bind_to_surface_mesh:
regularize = False
regularity_knn = 0
# Opacity management
prune_low_opacity_gaussians_at = [9000]
if bind_to_surface_mesh:
prune_low_opacity_gaussians_at = [999_999]
prune_hard_opacity_threshold = 0.5
# Warmup
do_resolution_warmup = False
if do_resolution_warmup:
resolution_warmup_every = 500
current_resolution_factor = downscale_resolution_factor * 4.
else:
current_resolution_factor = downscale_resolution_factor
do_sh_warmup = True # Should be True
if initialize_from_trained_3dgs:
do_sh_warmup = False
sh_levels = 4 # nerfmodel.gaussians.active_sh_degree + 1
CONSOLE.print("Changing sh_levels to match the loaded model:", sh_levels)
if do_sh_warmup:
sh_warmup_every = 1000
current_sh_levels = 1
else:
current_sh_levels = sh_levels
# -----Log and save-----
print_loss_every_n_iterations = 50
save_model_every_n_iterations = 1_000_000 # 500, 1_000_000 # TODO
save_milestones = [2000, 7_000, 15_000]
# ====================End of parameters====================
if args.output_dir is None:
if len(args.scene_path.split("/")[-1]) > 0:
args.output_dir = os.path.join("./output/refined", args.scene_path.split("/")[-1])
else:
args.output_dir = os.path.join("./output/refined", args.scene_path.split("/")[-2])
# Bounding box
if args.bboxmin is None:
use_custom_bbox = False
else:
if args.bboxmax is None:
raise ValueError("You need to specify both bboxmin and bboxmax.")
use_custom_bbox = True
# Parse bboxmin
if args.bboxmin[0] == '(':
args.bboxmin = args.bboxmin[1:]
if args.bboxmin[-1] == ')':
args.bboxmin = args.bboxmin[:-1]
args.bboxmin = tuple([float(x) for x in args.bboxmin.split(",")])
# Parse bboxmax
if args.bboxmax[0] == '(':
args.bboxmax = args.bboxmax[1:]
if args.bboxmax[-1] == ')':
args.bboxmax = args.bboxmax[:-1]
args.bboxmax = tuple([float(x) for x in args.bboxmax.split(",")])
source_path = args.scene_path
gs_checkpoint_path = args.checkpoint_path
surface_mesh_to_bind_path = args.mesh_path
mesh_name = surface_mesh_to_bind_path.split("/")[-1].split(".")[0]
iteration_to_load = args.iteration_to_load
surface_mesh_normal_consistency_factor = args.normal_consistency_factor
n_gaussians_per_surface_triangle = args.gaussians_per_triangle
n_vertices_in_fg = args.n_vertices_in_fg
surface_mesh_normal_consistency_factor = args.normal_consistency_factor
n_gaussians_per_surface_triangle = args.gaussians_per_triangle
n_vertices_in_fg = args.n_vertices_in_fg
num_iterations = args.refinement_iterations
sugar_checkpoint_path = 'sugarfine_' + mesh_name.replace('sugarmesh_', '') + '_normalconsistencyXX_gaussperfaceYY/'
sugar_checkpoint_path = os.path.join(args.output_dir, sugar_checkpoint_path)
sugar_checkpoint_path = sugar_checkpoint_path.replace(
'XX', str(surface_mesh_normal_consistency_factor).replace('.', '')
).replace(
'YY', str(n_gaussians_per_surface_triangle).replace('.', '')
)
if use_custom_bbox:
fg_bbox_min = args.bboxmin
fg_bbox_max = args.bboxmax
use_eval_split = args.eval
export_ply_at_the_end = args.export_ply
ply_path = os.path.join(source_path, "sparse/0/points3D.ply")
CONSOLE.print("-----Parsed parameters-----")
CONSOLE.print("Source path:", source_path)
CONSOLE.print(" > Content:", len(os.listdir(source_path)))
CONSOLE.print("Gaussian Splatting checkpoint path:", gs_checkpoint_path)
CONSOLE.print(" > Content:", len(os.listdir(gs_checkpoint_path)))
CONSOLE.print("SUGAR checkpoint path:", sugar_checkpoint_path)
CONSOLE.print("Surface mesh to bind to:", surface_mesh_to_bind_path)
CONSOLE.print("Iteration to load:", iteration_to_load)
CONSOLE.print("Normal consistency factor:", surface_mesh_normal_consistency_factor)
CONSOLE.print("Number of gaussians per surface triangle:", n_gaussians_per_surface_triangle)
CONSOLE.print("Number of vertices in the foreground:", n_vertices_in_fg)
if use_custom_bbox:
CONSOLE.print("Foreground bounding box min:", fg_bbox_min)
CONSOLE.print("Foreground bounding box max:", fg_bbox_max)
CONSOLE.print("Use eval split:", use_eval_split)
CONSOLE.print("Export ply at the end:", export_ply_at_the_end)
CONSOLE.print("----------------------------")
# Setup device
torch.cuda.set_device(num_device)
CONSOLE.print("Using device:", num_device)
device = torch.device(f'cuda:{num_device}')
CONSOLE.print(torch.cuda.memory_summary())
torch.autograd.set_detect_anomaly(detect_anomaly)
# Creates save directory if it does not exist
os.makedirs(sugar_checkpoint_path, exist_ok=True)
# ====================Load NeRF model and training data====================
# Load Gaussian Splatting checkpoint
CONSOLE.print(f"\nLoading config {gs_checkpoint_path}...")
if use_eval_split:
CONSOLE.print("Performing train/eval split...")
nerfmodel = GaussianSplattingWrapper(
source_path=source_path,
output_path=gs_checkpoint_path,
iteration_to_load=iteration_to_load,
load_gt_images=True,
eval_split=use_eval_split,
eval_split_interval=n_skip_images_for_eval_split,
)
CONSOLE.print(f'{len(nerfmodel.training_cameras)} training images detected.')
CONSOLE.print(f'The model has been trained for {iteration_to_load} steps.')
if downscale_resolution_factor != 1:
nerfmodel.downscale_output_resolution(downscale_resolution_factor)
CONSOLE.print(f'\nCamera resolution scaled to '
f'{nerfmodel.training_cameras.gs_cameras[0].image_height} x '
f'{nerfmodel.training_cameras.gs_cameras[0].image_width}'
)
# Point cloud
if initialize_from_trained_3dgs:
with torch.no_grad():
print("Initializing model from trained 3DGS...")
with torch.no_grad():
sh_levels = int(np.sqrt(nerfmodel.gaussians.get_features.shape[1]))
from sugar.sugar_utils.spherical_harmonics import SH2RGB
points = nerfmodel.gaussians.get_xyz.detach().float().cuda()
colors = SH2RGB(nerfmodel.gaussians.get_features[:, 0].detach().float().cuda())
if prune_at_start:
with torch.no_grad():
start_prune_mask = nerfmodel.gaussians.get_opacity.view(-1) > start_pruning_threshold
points = points[start_prune_mask]
colors = colors[start_prune_mask]
n_points = len(points)
else:
CONSOLE.print("\nLoading SfM point cloud...")
pcd = fetchPly(ply_path)
points = torch.tensor(pcd.points, device=nerfmodel.device).float().cuda()
colors = torch.tensor(pcd.colors, device=nerfmodel.device).float().cuda()
if n_points_at_start is not None:
n_points = n_points_at_start
pts_idx = torch.randperm(len(points))[:n_points]
points, colors = points.to(device)[pts_idx], colors.to(device)[pts_idx]
else:
n_points = len(points)
CONSOLE.print(f"Point cloud generated. Number of points: {len(points)}")
# Mesh to bind to if needed TODO
if bind_to_surface_mesh:
# surface_mesh_to_bind_full_path = os.path.join('./results/meshes/', surface_mesh_to_bind_path)
surface_mesh_to_bind_full_path = surface_mesh_to_bind_path
CONSOLE.print(f'\nLoading mesh to bind to: {surface_mesh_to_bind_full_path}...')
o3d_mesh = o3d.io.read_triangle_mesh(surface_mesh_to_bind_full_path)
CONSOLE.print("Mesh to bind to loaded.")
else:
o3d_mesh = None
learn_surface_mesh_positions = False
learn_surface_mesh_opacity = False
learn_surface_mesh_scales = False
n_gaussians_per_surface_triangle=1
if not regularize_sdf:
beta_mode = None
# ====================Initialize SuGaR model====================
# Construct SuGaR model
sugar = SuGaR(
nerfmodel=nerfmodel,
points=points, #nerfmodel.gaussians.get_xyz.data,
colors=colors, #0.5 + _C0 * nerfmodel.gaussians.get_features.data[:, 0, :],
initialize=True,
sh_levels=sh_levels,
learnable_positions=learnable_positions,
triangle_scale=triangle_scale,
keep_track_of_knn=regularize,
knn_to_track=regularity_knn,
beta_mode=beta_mode,
freeze_gaussians=freeze_gaussians,
surface_mesh_to_bind=o3d_mesh,
surface_mesh_thickness=None,
learn_surface_mesh_positions=learn_surface_mesh_positions,
learn_surface_mesh_opacity=learn_surface_mesh_opacity,
learn_surface_mesh_scales=learn_surface_mesh_scales,
n_gaussians_per_surface_triangle=n_gaussians_per_surface_triangle,
)
if initialize_from_trained_3dgs:
with torch.no_grad():
CONSOLE.print("Initializing 3D gaussians from 3D gaussians...")
if prune_at_start:
sugar._scales[...] = nerfmodel.gaussians._scaling.detach()[start_prune_mask]
sugar._quaternions[...] = nerfmodel.gaussians._rotation.detach()[start_prune_mask]
sugar.all_densities[...] = nerfmodel.gaussians._opacity.detach()[start_prune_mask]
sugar._sh_coordinates_dc[...] = nerfmodel.gaussians._features_dc.detach()[start_prune_mask]
sugar._sh_coordinates_rest[...] = nerfmodel.gaussians._features_rest.detach()[start_prune_mask]
else:
sugar._scales[...] = nerfmodel.gaussians._scaling.detach()
sugar._quaternions[...] = nerfmodel.gaussians._rotation.detach()
sugar.all_densities[...] = nerfmodel.gaussians._opacity.detach()
sugar._sh_coordinates_dc[...] = nerfmodel.gaussians._features_dc.detach()
sugar._sh_coordinates_rest[...] = nerfmodel.gaussians._features_rest.detach()
CONSOLE.print(f'\nSuGaR model has been initialized.')
CONSOLE.print(sugar)
CONSOLE.print(f'Number of parameters: {sum(p.numel() for p in sugar.parameters() if p.requires_grad)}')
CONSOLE.print(f'Checkpoints will be saved in {sugar_checkpoint_path}')
CONSOLE.print("\nModel parameters:")
for name, param in sugar.named_parameters():
CONSOLE.print(name, param.shape, param.requires_grad)
torch.cuda.empty_cache()
# Compute scene extent
cameras_spatial_extent = sugar.get_cameras_spatial_extent()
# ====================Initialize optimizer====================
if use_custom_bbox:
bbox_radius = ((torch.tensor(fg_bbox_max) - torch.tensor(fg_bbox_min)).norm(dim=-1) / 2.).item()
else:
bbox_radius = cameras_spatial_extent
spatial_lr_scale = 10. * bbox_radius / torch.tensor(n_vertices_in_fg).pow(1/2).item()
print("Using as spatial_lr_scale:", spatial_lr_scale, "with bbox_radius:", bbox_radius, "and n_vertices_in_fg:", n_vertices_in_fg)
opt_params = OptimizationParams(
iterations=num_iterations,
position_lr_init=position_lr_init,
position_lr_final=position_lr_final,
position_lr_delay_mult=position_lr_delay_mult,
position_lr_max_steps=position_lr_max_steps,
feature_lr=feature_lr,
opacity_lr=opacity_lr,
scaling_lr=scaling_lr,
rotation_lr=rotation_lr,
)
optimizer = SuGaROptimizer(sugar, opt_params, spatial_lr_scale=spatial_lr_scale)
CONSOLE.print("Optimizer initialized.")
CONSOLE.print("Optimization parameters:")
CONSOLE.print(opt_params)
CONSOLE.print("Optimizable parameters:")
for param_group in optimizer.optimizer.param_groups:
CONSOLE.print(param_group['name'], param_group['lr'])
# ====================Initialize densifier====================
if use_densifier:
gaussian_densifier = SuGaRDensifier(
sugar_model=sugar,
sugar_optimizer=optimizer,
max_grad=densify_grad_threshold,
min_opacity=prune_opacity_threshold,
max_screen_size=densify_screen_size_threshold,
scene_extent=cameras_spatial_extent,
percent_dense=densification_percent_distinction,
)
CONSOLE.print("Densifier initialized.")
# ====================Loss function====================
if loss_function == 'l1':
loss_fn = l1_loss
elif loss_function == 'l2':
loss_fn = l2_loss
elif loss_function == 'l1+dssim':
def loss_fn(pred_rgb, gt_rgb):
return (1.0 - dssim_factor) * l1_loss(pred_rgb, gt_rgb) + dssim_factor * (1.0 - ssim(pred_rgb, gt_rgb))
CONSOLE.print(f'Using loss function: {loss_function}')
# ====================Start training====================
sugar.train()
epoch = 0
iteration = 0
train_losses = []
t0 = time.time()
if initialize_from_trained_3dgs:
iteration = 7000 - 1 # TODO: Maybe should try without this?
for batch in range(9_999_999):
if iteration >= num_iterations:
break
# Shuffle images
shuffled_idx = torch.randperm(len(nerfmodel.training_cameras))
train_num_images = len(shuffled_idx)
# We iterate on images
for i in range(0, train_num_images, train_num_images_per_batch):
iteration += 1
# Update learning rates
optimizer.update_learning_rate(iteration)
# Prune low-opacity gaussians for optimizing triangles
if (
use_densifier and regularize and prune_when_starting_regularization and iteration == regularize_from + 1
) or (
(iteration-1) in prune_low_opacity_gaussians_at
):
CONSOLE.print("\nPruning gaussians with low-opacity for further optimization...")
prune_mask = (gaussian_densifier.model.strengths < prune_hard_opacity_threshold).squeeze()
gaussian_densifier.prune_points(prune_mask)
CONSOLE.print(f'Pruning finished: {sugar.n_points} gaussians left.')
if regularize and iteration >= start_reset_neighbors_from:
sugar.reset_neighbors()
start_idx = i
end_idx = min(i+train_num_images_per_batch, train_num_images)
camera_indices = shuffled_idx[start_idx:end_idx]
# Computing rgb predictions
if not no_rendering:
outputs = sugar.render_image_gaussian_rasterizer(
camera_indices=camera_indices.item(),
verbose=False,
bg_color = None,
sh_deg=current_sh_levels-1,
sh_rotations=None,
compute_color_in_rasterizer=compute_color_in_rasterizer,
compute_covariance_in_rasterizer=True,
return_2d_radii=use_densifier or regularize,
quaternions=None,
use_same_scale_in_all_directions=use_same_scale_in_all_directions,
return_opacities=enforce_entropy_regularization,
)
if use_densifier or regularize or enforce_entropy_regularization:
pred_rgb = outputs['image'].view(-1,
sugar.image_height,
sugar.image_width,
3)
if use_densifier or regularize:
radii = outputs['radii']
viewspace_points = outputs['viewspace_points']
if enforce_entropy_regularization:
opacities = outputs['opacities']
else:
pred_rgb = outputs.view(-1, sugar.image_height, sugar.image_width, 3)
pred_rgb = pred_rgb.transpose(-1, -2).transpose(-2, -3) # TODO: Change for torch.permute
# Gather rgb ground truth
gt_image = nerfmodel.get_gt_image(camera_indices=camera_indices)
gt_rgb = gt_image.view(-1, sugar.image_height, sugar.image_width, 3)
gt_rgb = gt_rgb.transpose(-1, -2).transpose(-2, -3)
# Compute loss
loss = loss_fn(pred_rgb, gt_rgb)
if enforce_entropy_regularization and iteration > start_entropy_regularization_from and iteration < end_entropy_regularization_at:
if iteration == start_entropy_regularization_from + 1:
CONSOLE.print("\n---INFO---\nStarting entropy regularization.")
if iteration == end_entropy_regularization_at - 1:
CONSOLE.print("\n---INFO---\nStopping entropy regularization.")
visibility_filter = radii > 0
if visibility_filter is not None:
vis_opacities = opacities[visibility_filter]
else:
vis_opacities = opacities
loss = loss + entropy_regularization_factor * (
- vis_opacities * torch.log(vis_opacities + 1e-10)
- (1 - vis_opacities) * torch.log(1 - vis_opacities + 1e-10)
).mean()
if regularize:
if iteration == regularize_from:
CONSOLE.print("Starting regularization...")
# sugar.reset_neighbors()
if iteration > regularize_from:
visibility_filter = radii > 0
if (iteration >= start_reset_neighbors_from) and ((iteration == regularize_from + 1) or (iteration % reset_neighbors_every == 0)):
CONSOLE.print("\n---INFO---\nResetting neighbors...")
sugar.reset_neighbors()
neighbor_idx = sugar.get_neighbors_of_random_points(num_samples=regularity_samples,)
if visibility_filter is not None:
neighbor_idx = neighbor_idx[visibility_filter] # TODO: Error here
if regularize_sdf and iteration > start_sdf_regularization_from:
if iteration == start_sdf_regularization_from + 1:
CONSOLE.print("\n---INFO---\nStarting SDF regularization.")
sampling_mask = visibility_filter
if (use_sdf_estimation_loss or enforce_samples_to_be_on_surface) and iteration > start_sdf_estimation_from:
if iteration == start_sdf_estimation_from + 1:
CONSOLE.print("\n---INFO---\nStarting SDF estimation loss.")
fov_camera = nerfmodel.training_cameras.p3d_cameras[camera_indices.item()]
# Render a depth map using gaussian splatting
if backpropagate_gradients_through_depth:
point_depth = fov_camera.get_world_to_view_transform().transform_points(sugar.points)[..., 2:].expand(-1, 3)
max_depth = point_depth.max()
depth = sugar.render_image_gaussian_rasterizer(
camera_indices=camera_indices.item(),
bg_color=max_depth + torch.zeros(3, dtype=torch.float, device=sugar.device),
sh_deg=0,
compute_color_in_rasterizer=False,#compute_color_in_rasterizer,
compute_covariance_in_rasterizer=True,
return_2d_radii=False,
use_same_scale_in_all_directions=False,
point_colors=point_depth,
)[..., 0]
else:
with torch.no_grad():
point_depth = fov_camera.get_world_to_view_transform().transform_points(sugar.points)[..., 2:].expand(-1, 3)
max_depth = point_depth.max()
depth = sugar.render_image_gaussian_rasterizer(
camera_indices=camera_indices.item(),
bg_color=max_depth + torch.zeros(3, dtype=torch.float, device=sugar.device),
sh_deg=0,
compute_color_in_rasterizer=False,#compute_color_in_rasterizer,
compute_covariance_in_rasterizer=True,
return_2d_radii=False,
use_same_scale_in_all_directions=False,
point_colors=point_depth,
)[..., 0]
# If needed, compute which gaussians are close to the surface in the depth map.
# Then, we sample points only in these gaussians.
# TODO: Compute projections only for gaussians in visibility filter.
# TODO: Is the torch.no_grad() a good idea?
if sample_only_in_gaussians_close_to_surface:
with torch.no_grad():
gaussian_to_camera = torch.nn.functional.normalize(fov_camera.get_camera_center() - sugar.points, dim=-1)
gaussian_centers_in_camera_space = fov_camera.get_world_to_view_transform().transform_points(sugar.points)
gaussian_centers_z = gaussian_centers_in_camera_space[..., 2] + 0.
gaussian_centers_map_z = sugar.get_points_depth_in_depth_map(fov_camera, depth, gaussian_centers_in_camera_space)
gaussian_standard_deviations = (
sugar.scaling * quaternion_apply(quaternion_invert(sugar.quaternions), gaussian_to_camera)
).norm(dim=-1)
gaussians_close_to_surface = (gaussian_centers_map_z - gaussian_centers_z).abs() < close_gaussian_threshold * gaussian_standard_deviations
sampling_mask = sampling_mask * gaussians_close_to_surface
n_gaussians_in_sampling = sampling_mask.sum()
if n_gaussians_in_sampling > 0:
sdf_samples, sdf_gaussian_idx = sugar.sample_points_in_gaussians(
num_samples=n_samples_for_sdf_regularization,
sampling_scale_factor=sdf_sampling_scale_factor,
mask=sampling_mask,
probabilities_proportional_to_volume=sdf_sampling_proportional_to_volume,
)
if use_sdf_estimation_loss or use_sdf_better_normal_loss:
fields = sugar.get_field_values(
sdf_samples, sdf_gaussian_idx,
return_sdf=(use_sdf_estimation_loss or enforce_samples_to_be_on_surface) and (sdf_estimation_mode=='sdf') and iteration > start_sdf_estimation_from,
density_threshold=density_threshold, density_factor=density_factor,
return_sdf_grad=False, sdf_grad_max_value=10.,
return_closest_gaussian_opacities=use_sdf_better_normal_loss and iteration > start_sdf_better_normal_from,
return_beta=(use_sdf_estimation_loss or enforce_samples_to_be_on_surface) and (sdf_estimation_mode=='density') and iteration > start_sdf_estimation_from,
)
if (use_sdf_estimation_loss or enforce_samples_to_be_on_surface) and iteration > start_sdf_estimation_from:
# Compute the depth of the points in the gaussians
sdf_samples_in_camera_space = fov_camera.get_world_to_view_transform().transform_points(sdf_samples)
sdf_samples_z = sdf_samples_in_camera_space[..., 2] + 0.
proj_mask = sdf_samples_z > fov_camera.znear
sdf_samples_map_z = sugar.get_points_depth_in_depth_map(fov_camera, depth, sdf_samples_in_camera_space[proj_mask])
sdf_estimation = sdf_samples_map_z - sdf_samples_z[proj_mask]
if not sample_only_in_gaussians_close_to_surface:
raise NotImplementedError("Not implemented yet.")
with torch.no_grad():
if normalize_by_sdf_std:
sdf_sample_std = gaussian_standard_deviations[sdf_gaussian_idx][proj_mask]
else:
sdf_sample_std = sugar.get_cameras_spatial_extent() / 10.
if use_sdf_estimation_loss:
if sdf_estimation_mode == 'sdf':
sdf_values = fields['sdf'][proj_mask]
if squared_sdf_estimation_loss:
sdf_estimation_loss = ((sdf_values - sdf_estimation.abs()) / sdf_sample_std).pow(2)
else:
sdf_estimation_loss = (sdf_values - sdf_estimation.abs()).abs() / sdf_sample_std
loss = loss + sdf_estimation_factor * sdf_estimation_loss.clamp(max=10.*sugar.get_cameras_spatial_extent()).mean()
elif sdf_estimation_mode == 'density':
beta = fields['beta'][proj_mask]
densities = fields['density'][proj_mask]
target_densities = torch.exp(-0.5 * sdf_estimation.pow(2) / beta.pow(2))
if squared_sdf_estimation_loss:
sdf_estimation_loss = ((densities - target_densities)).pow(2)
else:
sdf_estimation_loss = (densities - target_densities).abs()
loss = loss + sdf_estimation_factor * sdf_estimation_loss.mean()
else:
raise ValueError(f"Unknown sdf_estimation_mode: {sdf_estimation_mode}")
if enforce_samples_to_be_on_surface:
if squared_samples_on_surface_loss:
samples_on_surface_loss = (sdf_estimation / sdf_sample_std).pow(2)
else:
samples_on_surface_loss = sdf_estimation.abs() / sdf_sample_std
loss = loss + samples_on_surface_factor * samples_on_surface_loss.clamp(max=10.*sugar.get_cameras_spatial_extent()).mean()
if use_sdf_better_normal_loss and (iteration > start_sdf_better_normal_from):
if iteration == start_sdf_better_normal_from + 1:
CONSOLE.print("\n---INFO---\nStarting SDF better normal loss.")
closest_gaussians_idx = sugar.knn_idx[sdf_gaussian_idx]
# Compute minimum scaling
closest_min_scaling = sugar.scaling.min(dim=-1)[0][closest_gaussians_idx].detach().view(len(sdf_samples), -1)
# Compute normals and flip their sign if needed
closest_gaussian_normals = sugar.get_normals(estimate_from_points=False)[closest_gaussians_idx]
samples_gaussian_normals = sugar.get_normals(estimate_from_points=False)[sdf_gaussian_idx]
closest_gaussian_normals = closest_gaussian_normals * torch.sign(
(closest_gaussian_normals * samples_gaussian_normals[:, None]).sum(dim=-1, keepdim=True)
).detach()
# Compute weights for normal regularization, based on the gradient of the sdf
closest_gaussian_opacities = fields['closest_gaussian_opacities'].detach() # Shape is (n_samples, n_neighbors)
normal_weights = ((sdf_samples[:, None] - sugar.points[closest_gaussians_idx]) * closest_gaussian_normals).sum(dim=-1).abs() # Shape is (n_samples, n_neighbors)
if sdf_better_normal_gradient_through_normal_only:
normal_weights = normal_weights.detach()
normal_weights = closest_gaussian_opacities * normal_weights / closest_min_scaling.clamp(min=1e-6)**2 # Shape is (n_samples, n_neighbors)
# The weights should have a sum of 1 because of the eikonal constraint
normal_weights_sum = normal_weights.sum(dim=-1).detach() # Shape is (n_samples,)
normal_weights = normal_weights / normal_weights_sum.unsqueeze(-1).clamp(min=1e-6) # Shape is (n_samples, n_neighbors)
# Compute regularization loss
sdf_better_normal_loss = (samples_gaussian_normals - (normal_weights[..., None] * closest_gaussian_normals).sum(dim=-2)
).pow(2).sum(dim=-1) # Shape is (n_samples,)
loss = loss + sdf_better_normal_factor * sdf_better_normal_loss.mean()
else:
CONSOLE.log("WARNING: No gaussians available for sampling.")
else:
loss = 0.
# Surface mesh optimization
if bind_to_surface_mesh:
surface_mesh = sugar.surface_mesh
if use_surface_mesh_laplacian_smoothing_loss:
loss = loss + surface_mesh_laplacian_smoothing_factor * mesh_laplacian_smoothing(
surface_mesh, method=surface_mesh_laplacian_smoothing_method)
if use_surface_mesh_normal_consistency_loss:
loss = loss + surface_mesh_normal_consistency_factor * mesh_normal_consistency(surface_mesh)
# Update parameters
loss.backward()
# Densification
with torch.no_grad():
if (not no_rendering) and use_densifier and (iteration < densify_until_iter):
gaussian_densifier.update_densification_stats(viewspace_points, radii, visibility_filter=radii>0)
if iteration > densify_from_iter and iteration % densification_interval == 0:
size_threshold = gaussian_densifier.max_screen_size if iteration > opacity_reset_interval else None
gaussian_densifier.densify_and_prune(densify_grad_threshold, prune_opacity_threshold,
cameras_spatial_extent, size_threshold)
CONSOLE.print("Gaussians densified and pruned. New number of gaussians:", len(sugar.points))
if regularize and (iteration > regularize_from) and (iteration >= start_reset_neighbors_from):
sugar.reset_neighbors()
CONSOLE.print("Neighbors reset.")
if iteration % opacity_reset_interval == 0:
gaussian_densifier.reset_opacity()
CONSOLE.print("Opacity reset.")
# Optimization step
optimizer.step()
optimizer.zero_grad(set_to_none = True)
# Print loss
if iteration==1 or iteration % print_loss_every_n_iterations == 0:
CONSOLE.print(f'\n-------------------\nIteration: {iteration}')
train_losses.append(loss.detach().item())
CONSOLE.print(f"loss: {loss:>7f} [{iteration:>5d}/{num_iterations:>5d}]",
"computed in", (time.time() - t0) / 60., "minutes.")
with torch.no_grad():
scales = sugar.scaling.detach()
CONSOLE.print("------Stats-----")
CONSOLE.print("---Min, Max, Mean, Std")
CONSOLE.print("Points:", sugar.points.min().item(), sugar.points.max().item(), sugar.points.mean().item(), sugar.points.std().item(), sep=' ')
CONSOLE.print("Scaling factors:", sugar.scaling.min().item(), sugar.scaling.max().item(), sugar.scaling.mean().item(), sugar.scaling.std().item(), sep=' ')
CONSOLE.print("Quaternions:", sugar.quaternions.min().item(), sugar.quaternions.max().item(), sugar.quaternions.mean().item(), sugar.quaternions.std().item(), sep=' ')
CONSOLE.print("Sh coordinates dc:", sugar._sh_coordinates_dc.min().item(), sugar._sh_coordinates_dc.max().item(), sugar._sh_coordinates_dc.mean().item(), sugar._sh_coordinates_dc.std().item(), sep=' ')
CONSOLE.print("Sh coordinates rest:", sugar._sh_coordinates_rest.min().item(), sugar._sh_coordinates_rest.max().item(), sugar._sh_coordinates_rest.mean().item(), sugar._sh_coordinates_rest.std().item(), sep=' ')
CONSOLE.print("Opacities:", sugar.strengths.min().item(), sugar.strengths.max().item(), sugar.strengths.mean().item(), sugar.strengths.std().item(), sep=' ')
if regularize_sdf and iteration > start_sdf_regularization_from:
CONSOLE.print("Number of gaussians used for sampling in SDF regularization:", n_gaussians_in_sampling)
t0 = time.time()
# Save model
if (iteration % save_model_every_n_iterations == 0) or (iteration in save_milestones):
CONSOLE.print("Saving model...")
model_path = os.path.join(sugar_checkpoint_path, f'{iteration}.pt')
sugar.save_model(path=model_path,
train_losses=train_losses,
epoch=epoch,
iteration=iteration,
optimizer_state_dict=optimizer.state_dict(),
)
# if optimize_triangles and iteration >= optimize_triangles_from:
# rm.save_model(os.path.join(rc_checkpoint_path, f'rm_{iteration}.pt'))
CONSOLE.print("Model saved.")
if iteration >= num_iterations:
break
if do_sh_warmup and (iteration > 0) and (current_sh_levels < sh_levels) and (iteration % sh_warmup_every == 0):
current_sh_levels += 1
CONSOLE.print("Increasing number of spherical harmonics levels to", current_sh_levels)
if do_resolution_warmup and (iteration > 0) and (current_resolution_factor > 1) and (iteration % resolution_warmup_every == 0):
current_resolution_factor /= 2.
nerfmodel.downscale_output_resolution(1/2)
CONSOLE.print(f'\nCamera resolution scaled to '
f'{nerfmodel.training_cameras.ns_cameras.height[0].item()} x '
f'{nerfmodel.training_cameras.ns_cameras.width[0].item()}'
)
sugar.adapt_to_cameras(nerfmodel.training_cameras)
# TODO: resize GT images
epoch += 1
CONSOLE.print(f"Training finished after {num_iterations} iterations with loss={loss.detach().item()}.")
CONSOLE.print("Saving final model...")
model_path = os.path.join(sugar_checkpoint_path, f'{iteration}.pt')
sugar.save_model(path=model_path,
train_losses=train_losses,
epoch=epoch,
iteration=iteration,
optimizer_state_dict=optimizer.state_dict(),
)
CONSOLE.print("Final model saved.")
if export_ply_at_the_end:
# Build path
CONSOLE.print("\nExporting ply file with refined Gaussians...")
tmp_list = model_path.split(os.sep)
tmp_list[-4] = 'refined_ply'
tmp_list.pop(-1)
tmp_list[-1] = tmp_list[-1] + '.ply'
refined_ply_save_dir = os.path.join(*tmp_list[:-1])
refined_ply_save_path = os.path.join(*tmp_list)
os.makedirs(refined_ply_save_dir, exist_ok=True)
# Export and save ply
refined_gaussians = convert_refined_sugar_into_gaussians(sugar)
refined_gaussians.save_ply(refined_ply_save_path)
CONSOLE.print("Ply file exported. This file is needed for using the dedicated viewer.")
return model_path |