Spaces:
Runtime error
Runtime error
File size: 42,146 Bytes
e2ebf5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
import os
import numpy as np
import open3d as o3d
import torch
from pytorch3d.renderer import RasterizationSettings, MeshRasterizer
from sugar.sugar_scene.gs_model import GaussianSplattingWrapper
from sugar.sugar_scene.sugar_model import SuGaR
from sugar.sugar_utils.general_utils import str2bool
from sugar.sugar_utils.spherical_harmonics import SH2RGB
from rich.console import Console
def extract_mesh_from_coarse_sugar(args):
CONSOLE = Console(width=120)
all_sugar_mesh_paths = []
# ========== Parameters ==========
use_train_test_split = True
n_skip_images_for_eval_split = 8
low_opacity_gaussian_pruning_threshold = 0.5
# Surface level extraction parameters
n_total_points = 10_000_000
use_gaussian_depth_for_surface_levels = False # False until now
surface_level_triangle_scale = 2. # 2.
# surface_level_triangle_scale = -2 * np.log(surface_level)
surface_level_primitive_types = 'diamond' # 'diamond'
surface_level_splat_mesh = True # True
surface_level_n_points_in_range = 21 # 21
surface_level_range_size = 3.0 # 3.0
surface_level_n_points_per_pass = 2_000_000 # '2_000_000'
surface_level_knn_to_track = 16 # 16
flat_surface_level_normals = False # False
use_fast_method = True # TODO: Was False before, but True seems better
# Mesh computation parameters
fg_bbox_factor = 1. # 1.
bg_bbox_factor = 4. # 4.
poisson_depth = 10 # 10
decimate_mesh = True
clean_mesh = True
# Vanilla 3DGS data
source_path = args.scene_path
gs_checkpoint_path = args.checkpoint_path
iteration_to_load = args.iteration_to_load
use_train_test_split = args.eval
# Coarse model path
sugar_checkpoint_path = args.coarse_model_path
# Surface levels to extract
if args.surface_level is None:
surface_levels = [0.1, 0.3, 0.5]
else:
surface_levels = [args.surface_level]
# Decimation targets
if args.decimation_target is None:
decimation_targets = [200_000, 1_000_000]
else:
decimation_targets = [args.decimation_target]
# Mesh output dir
if args.mesh_output_dir is None:
if len(args.scene_path.split("/")[-1]) > 0:
args.mesh_output_dir = os.path.join("./output/coarse_mesh", args.scene_path.split("/")[-1])
else:
args.mesh_output_dir = os.path.join("./output/coarse_mesh", args.scene_path.split("/")[-2])
mesh_output_dir = args.mesh_output_dir
os.makedirs(mesh_output_dir, exist_ok=True)
# Bounding box
if args.bboxmin is None:
use_custom_bbox = False
else:
if args.bboxmax is None:
raise ValueError("You need to specify both bboxmin and bboxmax.")
use_custom_bbox = True
# Parse bboxmin
if args.bboxmin[0] == '(':
args.bboxmin = args.bboxmin[1:]
if args.bboxmin[-1] == ')':
args.bboxmin = args.bboxmin[:-1]
args.bboxmin = tuple([float(x) for x in args.bboxmin.split(",")])
# Parse bboxmax
if args.bboxmax[0] == '(':
args.bboxmax = args.bboxmax[1:]
if args.bboxmax[-1] == ')':
args.bboxmax = args.bboxmax[:-1]
args.bboxmax = tuple([float(x) for x in args.bboxmax.split(",")])
fg_bbox_min = args.bboxmin
fg_bbox_max = args.bboxmax
center_bbox = args.center_bbox
use_centers_to_extract_mesh = args.use_centers_to_extract_mesh
use_marching_cubes = args.use_marching_cubes
use_vanilla_3dgs = args.use_vanilla_3dgs
CONSOLE.print("-----Parameters-----")
CONSOLE.print("Source path:", source_path)
CONSOLE.print("Gaussian Splatting Checkpoint path:", gs_checkpoint_path)
CONSOLE.print("Coarse model Checkpoint path:", sugar_checkpoint_path)
CONSOLE.print("Mesh output path:", mesh_output_dir)
CONSOLE.print("Surface levels:", surface_levels)
CONSOLE.print("Decimation targets:", decimation_targets)
CONSOLE.print("Use custom bbox:", use_custom_bbox)
CONSOLE.print("Use eval split:", use_train_test_split)
CONSOLE.print("GPU:", args.gpu)
CONSOLE.print("Use centers to extract mesh:", use_centers_to_extract_mesh)
CONSOLE.print("Use marching cubes:", use_marching_cubes)
CONSOLE.print("Use vanilla 3DGS:", use_vanilla_3dgs)
CONSOLE.print("--------------------")
# Set the GPU
torch.cuda.set_device(args.gpu)
# Load the initial 3DGS model
CONSOLE.print(f"Loading the initial 3DGS model from path {gs_checkpoint_path}...")
nerfmodel = GaussianSplattingWrapper(
source_path=source_path,
output_path=gs_checkpoint_path,
iteration_to_load=iteration_to_load,
load_gt_images=False,
eval_split=use_train_test_split,
eval_split_interval=n_skip_images_for_eval_split,
)
CONSOLE.print(f'{len(nerfmodel.training_cameras)} training images detected.')
CONSOLE.print(f'The model has been trained for {iteration_to_load} steps.')
# Load the coarse model
if use_vanilla_3dgs:
CONSOLE.print(f"\nUsing the vanilla 3DGS model for meshing...")
with torch.no_grad():
print("Initializing model from trained 3DGS...")
points = nerfmodel.gaussians.get_xyz.detach().float().cuda()
colors = SH2RGB(nerfmodel.gaussians.get_features[:, 0].detach().float().cuda())
sugar = SuGaR(
nerfmodel=nerfmodel,
points=points,
colors=colors,
initialize=True,
sh_levels=nerfmodel.gaussians.active_sh_degree+1,
keep_track_of_knn=True,
knn_to_track=16,
beta_mode='average', # 'learnable', 'average', 'weighted_average'
primitive_types='diamond', # 'diamond', 'square'
surface_mesh_to_bind=None, # Open3D mesh
)
with torch.no_grad():
sugar._scales[...] = nerfmodel.gaussians._scaling.detach()
sugar._quaternions[...] = nerfmodel.gaussians._rotation.detach()
sugar.all_densities[...] = nerfmodel.gaussians._opacity.detach()
sugar._sh_coordinates_dc[...] = nerfmodel.gaussians._features_dc.detach()
sugar._sh_coordinates_rest[...] = nerfmodel.gaussians._features_rest.detach()
else:
CONSOLE.print(f"\nLoading the coarse SuGaR model from path {sugar_checkpoint_path}...")
checkpoint = torch.load(sugar_checkpoint_path, map_location=nerfmodel.device)
colors = SH2RGB(checkpoint['state_dict']['_sh_coordinates_dc'][:, 0, :])
sugar = SuGaR(
nerfmodel=nerfmodel,
points=checkpoint['state_dict']['_points'],
colors=colors,
initialize=True,
sh_levels=nerfmodel.gaussians.active_sh_degree+1,
keep_track_of_knn=True,
knn_to_track=16,
beta_mode='average', # 'learnable', 'average', 'weighted_average'
primitive_types='diamond', # 'diamond', 'square'
surface_mesh_to_bind=None, # Open3D mesh
)
sugar.load_state_dict(checkpoint['state_dict'])
sugar.eval()
CONSOLE.print("Coarse model loaded.")
CONSOLE.print("Coarse model parameters:")
for name, param in sugar.named_parameters():
CONSOLE.print(name, param.shape, param.requires_grad)
# Pruning low opacity gaussians
with torch.no_grad():
CONSOLE.print("Number of gaussians:", sugar.n_points)
CONSOLE.print("Opacities min/max/mean:", sugar.strengths.min(), sugar.strengths.max(), sugar.strengths.mean())
n_quantiles = 10
for i in range(n_quantiles):
CONSOLE.print(f'Quantile {i/n_quantiles}:', sugar.strengths.quantile(i/n_quantiles).item())
CONSOLE.print("\nStarting pruning low opacity gaussians...")
sugar.drop_low_opacity_points(low_opacity_gaussian_pruning_threshold)
CONSOLE.print("Number of gaussians left:", sugar.n_points)
CONSOLE.print("Opacities min/max/mean:", sugar.strengths.min(), sugar.strengths.max(), sugar.strengths.mean())
n_quantiles = 10
for i in range(n_quantiles):
CONSOLE.print(f'Quantile {i/n_quantiles}:', sugar.strengths.quantile(i/n_quantiles).item())
# Build the triangle soup that will be used for splatting
# sugar.primitive_types = 'square'
sugar.primitive_types = 'diamond'
sugar.triangle_scale = 2.
sugar.update_texture_features()
mesh = sugar.mesh
# Create a mesh renderer
faces_per_pixel = 10
max_faces_per_bin = 50_000
mesh_raster_settings = RasterizationSettings(
image_size=(sugar.image_height, sugar.image_width),
blur_radius=0.0,
faces_per_pixel=faces_per_pixel,
max_faces_per_bin=max_faces_per_bin
)
rasterizer = MeshRasterizer(
cameras=nerfmodel.training_cameras.p3d_cameras[0],
raster_settings=mesh_raster_settings,
)
if not use_marching_cubes:
if not use_centers_to_extract_mesh:
# Compute surface levels point clouds
n_pts_per_frame = int(n_total_points / len(nerfmodel.training_cameras)) + 1
sugar.knn_to_track = surface_level_knn_to_track
surface_levels_outputs = {}
for surface_level in surface_levels:
surface_levels_outputs[surface_level] = {
'points': torch.zeros(0, 3, device=sugar.device),
'colors': torch.zeros(0, 3, device=sugar.device),
'view_directions': torch.zeros(0, 3, device=sugar.device),
'pix_to_gaussians': torch.zeros(0, dtype=torch.long, device=sugar.device),
'normals': torch.zeros(0, 3, device=sugar.device),
}
with torch.no_grad():
cameras_to_use = nerfmodel.training_cameras
for cam_idx in range(len(nerfmodel.training_cameras)):
if cam_idx % 30 == 0:
CONSOLE.print(f"Processing frame {cam_idx}/{len(nerfmodel.training_cameras)}...")
for surface_level in surface_levels:
CONSOLE.print(f"Current point cloud for level {surface_level} has {len(surface_levels_outputs[surface_level]['points'])} points.")
point_depth = cameras_to_use.p3d_cameras[cam_idx].get_world_to_view_transform().transform_points(sugar.points)[..., 2:].expand(-1, 3)
# Render RGB image with Gaussian splatting
rgb = sugar.render_image_gaussian_rasterizer(
nerf_cameras=cameras_to_use,
camera_indices=cam_idx,
bg_color = None,
sh_deg=0, # nerfmodel.gaussians.active_sh_degree,
compute_color_in_rasterizer=True,
compute_covariance_in_rasterizer=True,
return_2d_radii=False,
use_same_scale_in_all_directions=False,
).clamp(min=0., max=1.).contiguous()
# Compute surface level points for the current frame
if cam_idx == 0:
sugar.reset_neighbors(knn_to_track=surface_level_knn_to_track)
with torch.no_grad():
if use_fast_method:
frame_surface_level_outputs = sugar.compute_level_surface_points_from_camera_fast(
cam_idx=cam_idx,
rasterizer=rasterizer,
surface_levels=surface_levels,
n_surface_points=2*n_pts_per_frame, # TODO: 2*n_pts_per_frame is safe to avoid empty pixels
primitive_types=surface_level_primitive_types,
triangle_scale=surface_level_triangle_scale,
splat_mesh=surface_level_splat_mesh,
n_points_in_range=surface_level_n_points_in_range,
range_size=surface_level_range_size,
n_points_per_pass=surface_level_n_points_per_pass,
density_factor=1.,
return_pixel_idx=True,
return_gaussian_idx=True,
return_normals=True,
compute_flat_normals=flat_surface_level_normals,
use_gaussian_depth=use_gaussian_depth_for_surface_levels,)
else:
frame_surface_level_outputs = sugar.compute_level_surface_points_from_camera_efficient(
cam_idx=cam_idx,
rasterizer=rasterizer,
surface_levels=surface_levels,
primitive_types=surface_level_primitive_types,
triangle_scale=surface_level_triangle_scale,
splat_mesh=surface_level_splat_mesh,
n_points_in_range=surface_level_n_points_in_range,
range_size=surface_level_range_size,
n_points_per_pass=surface_level_n_points_per_pass,
density_factor=1.,
return_depth=True,
return_gaussian_idx=True,
return_normals=True,
compute_flat_normals=flat_surface_level_normals,
use_gaussian_depth=use_gaussian_depth_for_surface_levels,)
for surface_level in surface_levels:
img_surface_points = frame_surface_level_outputs[surface_level]['intersection_points']
surface_gaussian_idx = frame_surface_level_outputs[surface_level]['gaussian_idx']
img_surface_normals = frame_surface_level_outputs[surface_level]['normals']
if use_fast_method:
pixel_idx = frame_surface_level_outputs[surface_level]['pixel_idx']
img_surface_colors = rgb.view(-1, 3)[pixel_idx]
else:
empty_pixels = frame_surface_level_outputs[surface_level]['empty_pixels']
img_surface_colors = rgb.view(-1, 3)[~empty_pixels]
img_surface_view_directions = torch.nn.functional.normalize(cameras_to_use.p3d_cameras[cam_idx].get_camera_center() - img_surface_points)
img_surface_pix_to_gaussians = surface_gaussian_idx.view(-1)
idx = torch.randperm(len(img_surface_points), device=sugar.device)[:n_pts_per_frame]
surface_levels_outputs[surface_level]['points'] = torch.cat([surface_levels_outputs[surface_level]['points'], img_surface_points[idx]], dim=0)
surface_levels_outputs[surface_level]['colors'] = torch.cat([surface_levels_outputs[surface_level]['colors'], img_surface_colors[idx]], dim=0)
surface_levels_outputs[surface_level]['view_directions'] = torch.cat([surface_levels_outputs[surface_level]['view_directions'], img_surface_view_directions[idx]], dim=0)
surface_levels_outputs[surface_level]['pix_to_gaussians'] = torch.cat([surface_levels_outputs[surface_level]['pix_to_gaussians'], img_surface_pix_to_gaussians[idx]], dim=0)
surface_levels_outputs[surface_level]['normals'] = torch.cat([surface_levels_outputs[surface_level]['normals'], img_surface_normals[idx]], dim=0)
# -----Processing surface levels-----
for surface_level in surface_levels:
CONSOLE.print("\n========== Processing surface level", surface_level, "==========")
CONSOLE.print(f"Final point cloud for level {surface_level} has {len(surface_levels_outputs[surface_level]['points'])} points.")
surface_points = surface_levels_outputs[surface_level]['points']
surface_colors = surface_levels_outputs[surface_level]['colors']
surface_normals = surface_levels_outputs[surface_level]['normals']
if use_custom_bbox:
CONSOLE.print("Using provided bounding box.")
fg_bbox_min_tensor = torch.tensor(fg_bbox_min).to(sugar.device)
fg_bbox_max_tensor = torch.tensor(fg_bbox_max).to(sugar.device)
else:
CONSOLE.print("Using default, camera based bounding box.")
fg_bbox_min_tensor = - fg_bbox_factor * sugar.get_cameras_spatial_extent() * torch.ones(1, 3, device=sugar.device)
fg_bbox_max_tensor = fg_bbox_factor * sugar.get_cameras_spatial_extent() * torch.ones(1, 3, device=sugar.device)
if center_bbox:
_cameras_spatial_extent, _camera_average_xyz = sugar.get_cameras_spatial_extent(return_average_xyz=True)
with torch.no_grad():
CONSOLE.print("Centering bounding box.")
fg_bbox_min_tensor = fg_bbox_min_tensor + _camera_average_xyz
fg_bbox_max_tensor = fg_bbox_max_tensor + _camera_average_xyz
points_idx = torch.arange(len(surface_points))
fg_mask = (surface_points[points_idx] > fg_bbox_min_tensor).all(dim=-1) * (surface_points[points_idx] < fg_bbox_max_tensor).all(dim=-1)
if center_bbox:
bg_mask = ((surface_points[points_idx] - _camera_average_xyz).abs().max(dim=-1)[0]
< bg_bbox_factor * _cameras_spatial_extent) * ~fg_mask
else:
bg_mask = (surface_points[points_idx].abs().max(dim=-1)[0] < bg_bbox_factor * sugar.get_cameras_spatial_extent()) * ~fg_mask
fg_points = surface_points[points_idx][fg_mask]
fg_colors = surface_colors[points_idx][fg_mask]
fg_normals = surface_normals[points_idx][fg_mask]
bg_points = surface_points[points_idx][bg_mask]
bg_colors = surface_colors[points_idx][bg_mask]
bg_normals = surface_normals[points_idx][bg_mask]
CONSOLE.print("Foreground points:", fg_points.shape, fg_colors.shape, fg_normals.shape)
CONSOLE.print("Background points:", bg_points.shape, bg_colors.shape, bg_normals.shape)
# ---Compute foreground mesh---
CONSOLE.print("\n-----Foreground mesh-----")
if fg_points.shape[0] > 0:
CONSOLE.print("Computing points, colors and normals...")
fg_pcd = o3d.geometry.PointCloud()
fg_pcd.points = o3d.utility.Vector3dVector(fg_points.double().cpu().numpy())
fg_pcd.colors = o3d.utility.Vector3dVector(fg_colors.double().cpu().numpy())
fg_pcd.normals = o3d.utility.Vector3dVector(fg_normals.double().cpu().numpy())
# outliers removal
cl, ind = fg_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.)
CONSOLE.print("Cleaning Point Cloud...")
fg_pcd = fg_pcd.select_by_index(ind)
CONSOLE.print("Finished computing points, colors and normals.")
CONSOLE.print("Now computing mesh...")
o3d_fg_mesh, o3d_fg_densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
fg_pcd, depth=poisson_depth) #, width=0, scale=1.1, linear_fit=False) # depth=10 should be the default value? 11 is good to (but it starts to make a big number of triangles)
CONSOLE.print("Removing vertices with low densities...")
vertices_to_remove = o3d_fg_densities < np.quantile(o3d_fg_densities, 0.1)
o3d_fg_mesh.remove_vertices_by_mask(vertices_to_remove)
else:
CONSOLE.print("\n[WARNING] Foreground is empty.")
o3d_fg_mesh = None
# ---Compute background mesh---
CONSOLE.print("\n-----Background mesh-----")
if bg_points.shape[0] > 0:
CONSOLE.print("Computing points, colors and normals...")
bg_pcd = o3d.geometry.PointCloud()
bg_pcd.points = o3d.utility.Vector3dVector(bg_points.double().cpu().numpy())
bg_pcd.colors = o3d.utility.Vector3dVector(bg_colors.double().cpu().numpy())
bg_pcd.normals = o3d.utility.Vector3dVector(bg_normals.double().cpu().numpy())
# outliers removal
cl, ind = bg_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.)
CONSOLE.print("Cleaning Point Cloud...")
bg_pcd = bg_pcd.select_by_index(ind)
CONSOLE.print("Finished computing points, colors and normals.")
CONSOLE.print("Now computing mesh...")
o3d_bg_mesh, o3d_bg_densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
bg_pcd, depth=poisson_depth) #, width=0, scale=1.1, linear_fit=False) # depth=10 should be the default value? 11 is good to (but it starts to make a big number of triangles)
CONSOLE.print("Removing vertices with low densities...")
vertices_to_remove = o3d_bg_densities < np.quantile(o3d_bg_densities, 0.1)
o3d_bg_mesh.remove_vertices_by_mask(vertices_to_remove)
else:
CONSOLE.print("\n[WARNING] Background is empty.")
o3d_bg_mesh = None
CONSOLE.print("Finished computing meshes.")
CONSOLE.print("Foreground mesh:", o3d_fg_mesh)
CONSOLE.print("Background mesh:", o3d_bg_mesh)
# ---Decimate and clean meshes---
CONSOLE.print("\n-----Decimating and cleaning meshes-----")
for decimation_target in decimation_targets:
CONSOLE.print("\nProcessing decimation target:", decimation_target)
if decimate_mesh:
if o3d_fg_mesh is not None:
CONSOLE.print("Decimating foreground mesh...")
decimated_o3d_fg_mesh = o3d_fg_mesh.simplify_quadric_decimation(decimation_target)
CONSOLE.print("Finished decimating foreground mesh.")
else:
decimated_o3d_fg_mesh = None
if o3d_bg_mesh is not None:
CONSOLE.print("Decimating background mesh...")
decimated_o3d_bg_mesh = o3d_bg_mesh.simplify_quadric_decimation(decimation_target)
CONSOLE.print("Finished decimating background mesh.")
else:
decimated_o3d_bg_mesh = None
if clean_mesh:
CONSOLE.print("Cleaning mesh...")
if decimated_o3d_fg_mesh is not None:
decimated_o3d_fg_mesh.remove_degenerate_triangles()
decimated_o3d_fg_mesh.remove_duplicated_triangles()
decimated_o3d_fg_mesh.remove_duplicated_vertices()
decimated_o3d_fg_mesh.remove_non_manifold_edges()
if decimated_o3d_bg_mesh is not None:
decimated_o3d_bg_mesh.remove_degenerate_triangles()
decimated_o3d_bg_mesh.remove_duplicated_triangles()
decimated_o3d_bg_mesh.remove_duplicated_vertices()
decimated_o3d_bg_mesh.remove_non_manifold_edges()
if (decimated_o3d_fg_mesh is not None) and (decimated_o3d_bg_mesh is not None):
CONSOLE.print("Merging foreground and background meshes.")
decimated_o3d_mesh = decimated_o3d_fg_mesh + decimated_o3d_bg_mesh
elif decimated_o3d_fg_mesh is not None:
CONSOLE.print("Using foreground mesh only, since background mesh is empty.")
decimated_o3d_mesh = decimated_o3d_fg_mesh
elif decimated_o3d_bg_mesh is not None:
CONSOLE.print("Using background mesh only, since foreground mesh is empty.")
decimated_o3d_mesh = decimated_o3d_bg_mesh
else:
raise ValueError("Both foreground and background meshes are empty. Please provide a valid bounding box for the scene.")
if use_vanilla_3dgs:
sugar_mesh_path = 'sugarmesh_vanilla3dgs_levelZZ_decimAA.ply'
else:
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + '_levelZZ_decimAA.ply'
sugar_mesh_path = sugar_mesh_path.replace(
'ZZ', str(surface_level).replace('.', '')
).replace(
'AA', str(decimation_target).replace('.', '')
)
sugar_mesh_path = os.path.join(mesh_output_dir, sugar_mesh_path)
o3d.io.write_triangle_mesh(sugar_mesh_path, decimated_o3d_mesh, write_triangle_uvs=True, write_vertex_colors=True, write_vertex_normals=True)
CONSOLE.print("Mesh saved at", sugar_mesh_path)
all_sugar_mesh_paths.append(sugar_mesh_path)
else:
CONSOLE.print("\nWARNING: Using centers of gaussians to extract mesh.")
CONSOLE.print("Results will look bad, this is not the best way to extract a mesh.")
CONSOLE.print("You should use this option only for ablation.")
with torch.no_grad():
surface_points = sugar.points
surface_colors = SH2RGB(sugar._sh_coordinates_dc[:, 0, :])
surface_normals = sugar.get_normals(estimate_from_points=True)
if use_custom_bbox:
CONSOLE.print("Using provided bounding box.")
fg_bbox_min_tensor = torch.tensor(fg_bbox_min).to(sugar.device)
fg_bbox_max_tensor = torch.tensor(fg_bbox_max).to(sugar.device)
else:
CONSOLE.print("Using default, camera based bounding box.")
fg_bbox_min_tensor = - fg_bbox_factor * sugar.get_cameras_spatial_extent() * torch.ones(1, 3, device=sugar.device)
fg_bbox_max_tensor = fg_bbox_factor * sugar.get_cameras_spatial_extent() * torch.ones(1, 3, device=sugar.device)
points_idx = torch.arange(len(surface_points))
fg_mask = (surface_points[points_idx] > fg_bbox_min_tensor).all(dim=-1) * (surface_points[points_idx] < fg_bbox_max_tensor).all(dim=-1)
bg_mask = (surface_points[points_idx].abs().max(dim=-1)[0] < bg_bbox_factor * sugar.get_cameras_spatial_extent()) * ~fg_mask
fg_points = surface_points[points_idx][fg_mask]
fg_colors = surface_colors[points_idx][fg_mask]
fg_normals = surface_normals[points_idx][fg_mask]
bg_points = surface_points[points_idx][bg_mask]
bg_colors = surface_colors[points_idx][bg_mask]
bg_normals = surface_normals[points_idx][bg_mask]
CONSOLE.print("Foreground points:", fg_points.shape, fg_colors.shape, fg_normals.shape)
CONSOLE.print("Background points:", bg_points.shape, bg_colors.shape, bg_normals.shape)
# ---Compute foreground mesh---
CONSOLE.print("\n-----Foreground mesh-----")
CONSOLE.print("Computing points, colors and normals...")
fg_pcd = o3d.geometry.PointCloud()
fg_pcd.points = o3d.utility.Vector3dVector(fg_points.double().cpu().numpy())
fg_pcd.colors = o3d.utility.Vector3dVector(fg_colors.double().cpu().numpy())
fg_pcd.normals = o3d.utility.Vector3dVector(fg_normals.double().cpu().numpy())
# outliers removal
cl, ind = fg_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.)
CONSOLE.print("Cleaning Point Cloud...")
fg_pcd = fg_pcd.select_by_index(ind)
CONSOLE.print("Finished computing points, colors and normals.")
CONSOLE.print("Now computing mesh...")
o3d_fg_mesh, o3d_fg_densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
fg_pcd, depth=poisson_depth) #, width=0, scale=1.1, linear_fit=False) # depth=10 should be the default value? 11 is good to (but it starts to make a big number of triangles)
CONSOLE.print("Removing vertices with low densities...")
vertices_to_remove = o3d_fg_densities < np.quantile(o3d_fg_densities, 0.1)
o3d_fg_mesh.remove_vertices_by_mask(vertices_to_remove)
# ---Compute background mesh---
if bg_points.shape[0] > 0:
CONSOLE.print("\n-----Background mesh-----")
CONSOLE.print("Computing points, colors and normals...")
bg_pcd = o3d.geometry.PointCloud()
bg_pcd.points = o3d.utility.Vector3dVector(bg_points.double().cpu().numpy())
bg_pcd.colors = o3d.utility.Vector3dVector(bg_colors.double().cpu().numpy())
bg_pcd.normals = o3d.utility.Vector3dVector(bg_normals.double().cpu().numpy())
# outliers removal
cl, ind = bg_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.)
CONSOLE.print("Cleaning Point Cloud...")
bg_pcd = bg_pcd.select_by_index(ind)
CONSOLE.print("Finished computing points, colors and normals.")
CONSOLE.print("Now computing mesh...")
o3d_bg_mesh, o3d_bg_densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
bg_pcd, depth=poisson_depth) #, width=0, scale=1.1, linear_fit=False) # depth=10 should be the default value? 11 is good to (but it starts to make a big number of triangles)
CONSOLE.print("Removing vertices with low densities...")
vertices_to_remove = o3d_bg_densities < np.quantile(o3d_bg_densities, 0.1)
o3d_bg_mesh.remove_vertices_by_mask(vertices_to_remove)
else:
o3d_bg_mesh = None
CONSOLE.print("Finished computing meshes.")
CONSOLE.print("Foreground mesh:", o3d_fg_mesh)
CONSOLE.print("Background mesh:", o3d_bg_mesh)
# ---Decimate and clean meshes---
CONSOLE.print("\n-----Decimating and cleaning meshes-----")
for decimation_target in decimation_targets:
CONSOLE.print("\nProcessing decimation target:", decimation_target)
if decimate_mesh:
CONSOLE.print("Decimating foreground mesh...")
decimated_o3d_fg_mesh = o3d_fg_mesh.simplify_quadric_decimation(decimation_target)
CONSOLE.print("Finished decimating foreground mesh.")
if o3d_bg_mesh is not None:
CONSOLE.print("Decimating background mesh...")
decimated_o3d_bg_mesh = o3d_bg_mesh.simplify_quadric_decimation(decimation_target)
CONSOLE.print("Finished decimating background mesh.")
if clean_mesh:
CONSOLE.print("Cleaning mesh...")
decimated_o3d_fg_mesh.remove_degenerate_triangles()
decimated_o3d_fg_mesh.remove_duplicated_triangles()
decimated_o3d_fg_mesh.remove_duplicated_vertices()
decimated_o3d_fg_mesh.remove_non_manifold_edges()
if decimated_o3d_bg_mesh is not None:
decimated_o3d_bg_mesh.remove_degenerate_triangles()
decimated_o3d_bg_mesh.remove_duplicated_triangles()
decimated_o3d_bg_mesh.remove_duplicated_vertices()
decimated_o3d_bg_mesh.remove_non_manifold_edges()
if decimated_o3d_bg_mesh is not None:
decimated_o3d_mesh = decimated_o3d_fg_mesh + decimated_o3d_bg_mesh
else:
decimated_o3d_mesh = decimated_o3d_fg_mesh
if use_vanilla_3dgs:
sugar_mesh_path = 'sugarmesh_vanilla3dgs_poissoncenters_decimAA.ply'
else:
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + '_poissoncenters_decimAA.ply'
sugar_mesh_path = sugar_mesh_path.replace(
'AA', str(decimation_target).replace('.', '')
)
sugar_mesh_path = os.path.join(mesh_output_dir, sugar_mesh_path)
o3d.io.write_triangle_mesh(sugar_mesh_path, decimated_o3d_mesh, write_triangle_uvs=True, write_vertex_colors=True, write_vertex_normals=True)
CONSOLE.print("Mesh saved at", sugar_mesh_path)
all_sugar_mesh_paths.append(sugar_mesh_path)
else:
CONSOLE.print("\nWARNING: Using marching cubes to extract mesh.")
import mcubes
sugar.reset_neighbors(knn_to_track=16)
resolution = 512
surface_level = surface_levels[0]
decimation_target = decimation_targets[0]
# Foreground mesh
CONSOLE.print("\n-----Foreground mesh-----")
X = torch.linspace(-1, 1, resolution) * sugar.get_cameras_spatial_extent()
Y = torch.linspace(-1, 1, resolution) * sugar.get_cameras_spatial_extent()
Z = torch.linspace(-1, 1, resolution) * sugar.get_cameras_spatial_extent()
xx, yy, zz = torch.meshgrid(X, Y, Z)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(sugar.device)
xx.shape, yy.shape, zz.shape, pts.shape
n_pts_per_pass = 2_000_000
densities = torch.zeros(0, device=sugar.device)
CONSOLE.print("Computing densities...")
with torch.no_grad():
for i in range(0, len(pts), n_pts_per_pass):
print("\nPts:", i, 'to', i+n_pts_per_pass)
pts_i = pts[i:i+n_pts_per_pass]
densities_i = sugar.compute_density(pts_i)
densities = torch.cat([densities, densities_i], dim=0)
densities = densities.reshape(resolution, resolution, resolution)
CONSOLE.print("Finished computing densities.")
density_th = surface_levels[0] # 1.
CONSOLE.print(f"Computing mesh for surface level {density_th}...")
vertices, triangles = mcubes.marching_cubes(densities.cpu().numpy(), density_th)
verts = -sugar.get_cameras_spatial_extent() + (torch.tensor(vertices) / resolution) * 2 * sugar.get_cameras_spatial_extent()
faces = torch.tensor(triangles.tolist())
closest_gaussians = sugar.get_gaussians_closest_to_samples(verts.float().to(sugar.device))
verts_colors = SH2RGB(sugar._sh_coordinates_dc[closest_gaussians[:, 0]][:, 0, :])
mc_mesh = o3d.geometry.TriangleMesh()
mc_mesh.vertices = o3d.utility.Vector3dVector(verts.cpu().numpy())
mc_mesh.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy())
mc_mesh.vertex_colors = o3d.utility.Vector3dVector(verts_colors.cpu().numpy())
mc_mesh.compute_vertex_normals()
CONSOLE.print("Finished computing mesh.")
# Background mesh
CONSOLE.print("\n-----Background mesh-----")
X = torch.linspace(-1, 1, resolution) * 4 * sugar.get_cameras_spatial_extent()
Y = torch.linspace(-1, 1, resolution) * 4 * sugar.get_cameras_spatial_extent()
Z = torch.linspace(-1, 1, resolution) * 4 * sugar.get_cameras_spatial_extent()
xx, yy, zz = torch.meshgrid(X, Y, Z)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(sugar.device)
xx.shape, yy.shape, zz.shape, pts.shape
n_pts_per_pass = 2_000_000
densities = torch.zeros(0, device=sugar.device)
CONSOLE.print("Computing densities...")
with torch.no_grad():
for i in range(0, len(pts), n_pts_per_pass):
print("\nPts:", i, 'to', i+n_pts_per_pass)
pts_i = pts[i:i+n_pts_per_pass]
densities_i = sugar.compute_density(pts_i)
densities = torch.cat([densities, densities_i], dim=0)
CONSOLE.print("Finished computing densities.")
# Removing pts in foreground
densities[(pts > -sugar.get_cameras_spatial_extent()).all(dim=-1) * (pts < sugar.get_cameras_spatial_extent()).all(dim=-1)] = 0.
densities = densities.reshape(resolution, resolution, resolution)
density_th = surface_levels[0] # 1.
CONSOLE.print(f"Computing mesh for surface level {density_th}...")
bg_vertices, bg_triangles = mcubes.marching_cubes(densities.cpu().numpy(), density_th)
bg_verts = - 4 * sugar.get_cameras_spatial_extent() + (torch.tensor(bg_vertices) / resolution) * 2 * 4 * sugar.get_cameras_spatial_extent()
bg_faces = torch.tensor(bg_triangles.tolist())
closest_gaussians = sugar.get_gaussians_closest_to_samples(bg_verts.float().to(sugar.device))
bg_verts_colors = SH2RGB(sugar._sh_coordinates_dc[closest_gaussians[:, 0]][:, 0, :])
bg_mc_mesh = o3d.geometry.TriangleMesh()
bg_mc_mesh.vertices = o3d.utility.Vector3dVector(bg_verts.cpu().numpy())
bg_mc_mesh.triangles = o3d.utility.Vector3iVector(bg_faces.cpu().numpy())
bg_mc_mesh.vertex_colors = o3d.utility.Vector3dVector(bg_verts_colors.cpu().numpy())
bg_mc_mesh.compute_vertex_normals()
CONSOLE.print("Finished computing mesh.")
# Decimate and clean meshes
decimate_mesh = True
decimation_target = decimation_targets[0]
if decimate_mesh:
print(f"Decimating mesh to target {decimation_target}...")
decimated_o3d_fg_mesh = mc_mesh.simplify_quadric_decimation(decimation_target)
print("Finished decimating mesh.")
print("Decimating mesh...")
decimated_o3d_bg_mesh = bg_mc_mesh.simplify_quadric_decimation(decimation_target)
print("Finished decimating mesh.")
else:
decimated_o3d_fg_mesh = mc_mesh
decimated_o3d_bg_mesh = bg_mc_mesh
clean_mesh = True
if clean_mesh:
decimated_o3d_fg_mesh.remove_degenerate_triangles()
decimated_o3d_fg_mesh.remove_duplicated_triangles()
decimated_o3d_fg_mesh.remove_duplicated_vertices()
decimated_o3d_fg_mesh.remove_non_manifold_edges()
decimated_o3d_bg_mesh.remove_degenerate_triangles()
decimated_o3d_bg_mesh.remove_duplicated_triangles()
decimated_o3d_bg_mesh.remove_duplicated_vertices()
decimated_o3d_bg_mesh.remove_non_manifold_edges()
decimated_o3d_mesh = decimated_o3d_fg_mesh + decimated_o3d_bg_mesh
if use_vanilla_3dgs:
sugar_mesh_path = 'sugarmesh_vanilla3dgsmarchingcubes_levelZZ_decimAA.ply'
else:
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + 'marchingcubes_levelZZ_decimAA.ply'
sugar_mesh_path = sugar_mesh_path.replace(
'ZZ', str(surface_level).replace('.', '')
).replace(
'AA', str(decimation_target).replace('.', '')
)
sugar_mesh_path = os.path.join(mesh_output_dir, sugar_mesh_path)
o3d.io.write_triangle_mesh(sugar_mesh_path, decimated_o3d_mesh, write_triangle_uvs=True, write_vertex_colors=True, write_vertex_normals=True)
CONSOLE.print("Mesh saved at", sugar_mesh_path)
all_sugar_mesh_paths.append(sugar_mesh_path)
return all_sugar_mesh_paths |