Spaces:
Runtime error
Runtime error
File size: 8,665 Bytes
f88f754 85b3dcf f1ed22c f88f754 f1ed22c 73ee311 f1ed22c 73ee311 f1ed22c 73ee311 f1ed22c 73ee311 f1ed22c 73ee311 f1ed22c 85b3dcf f1ed22c 85b3dcf f88f754 7d4c917 40d6202 f88f754 73ee311 f88f754 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 73ee311 bd1e951 f88f754 85da865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import json
import random
import requests
import os
from PIL import Image
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, LCMScheduler
from peft import PeftModel
# Custom LCMScheduler to ignore unexpected attributes
class CustomLCMScheduler(LCMScheduler):
@property
def config(self):
return {k: v for k, v in super().config.items() if k != "skip_prk_steps"}
def get_image(image_data):
# ... (keep the get_image function as is)
with open("sdxl_lora.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": get_image(item["image"]),
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"likes": item.get("likes", 0),
}
for item in data
]
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
pipe.scheduler = CustomLCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=DEVICE, dtype=torch.float16)
# Load Flash SDXL LoRA
flash_sdxl_id = "jasperai/flash-sdxl"
pipe.load_lora_weights(flash_sdxl_id, adapter_name="flash_lora")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def update_selection(selected_state: gr.SelectData, gr_sdxl_loras):
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
return lora_id, trigger_word
@spaces.GPU
def infer(
pre_prompt,
prompt,
seed,
randomize_seed,
num_inference_steps,
negative_prompt,
guidance_scale,
user_lora_selector,
user_lora_weight,
progress=gr.Progress(track_tqdm=True),
):
try:
# Load the user-selected LoRA
new_adapter_id = user_lora_selector.replace("/", "_")
pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
# Set adapter weights
pipe.set_adapters(["flash_lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight])
gr.Info("LoRA setup complete")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if pre_prompt != "":
prompt = f"{pre_prompt} {prompt}"
# Use Flash Diffusion settings
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=1.0, # Flash Diffusion typically uses guidance_scale=1
num_inference_steps=4, # Flash Diffusion uses fewer steps
generator=generator,
).images[0]
return image
except Exception as e:
gr.Error(f"An error occurred: {str(e)}")
return None
@spaces.GPU
def infer(
pre_prompt,
prompt,
seed,
randomize_seed,
num_inference_steps,
negative_prompt,
guidance_scale,
user_lora_selector,
user_lora_weight,
progress=gr.Progress(track_tqdm=True),
):
load_lora_for_style(user_lora_selector)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if pre_prompt != "":
prompt = f"{pre_prompt} {prompt}"
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image
css = """
body {
background-color: #1a1a1a;
color: #ffffff;
}
.container {
max-width: 900px;
margin: auto;
padding: 20px;
}
h1, h2 {
color: #4CAF50;
text-align: center;
}
.gallery {
display: flex;
flex-wrap: wrap;
justify-content: center;
}
.gallery img {
margin: 10px;
border-radius: 10px;
transition: transform 0.3s ease;
}
.gallery img:hover {
transform: scale(1.05);
}
.gradio-slider input[type="range"] {
background-color: #4CAF50;
}
.gradio-button {
background-color: #4CAF50 !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# β‘ FlashDiffusion: Araminta K's FlashLoRA Showcase β‘
This interactive demo showcases [Araminta K's models](https://huggingface.co/alvdansen) using [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) technology.
## Acknowledgments
- Original Flash Diffusion technology by the Jasper AI team
- Based on the paper: [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin
- Models showcased here are created by Araminta K at Alvdansen Labs
Explore the power of FlashLoRA with Araminta K's unique artistic styles!
"""
)
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
gr_lora_id = gr.State(value="")
with gr.Row():
with gr.Column(scale=2):
gallery = gr.Gallery(
value=[(get_image(item["image"]), item["title"]) for item in sdxl_loras_raw if get_image(item["image"]) is not None],
label="SDXL LoRA Gallery",
show_label=False,
elem_id="gallery",
columns=3,
height=600,
)
user_lora_selector = gr.Textbox(
label="Current Selected LoRA",
interactive=False,
)
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=3,
)
with gr.Row():
run_button = gr.Button("Run", variant="primary")
clear_button = gr.Button("Clear")
result = gr.Image(label="Result", height=512)
with gr.Accordion("Advanced Settings", open=False):
pre_prompt = gr.Textbox(
label="Pre-Prompt",
placeholder="Pre Prompt from the LoRA config",
lines=2,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=8,
step=1,
value=4,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=6,
step=0.5,
value=1,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Enter a negative Prompt",
lines=2,
)
gr.on(
[run_button.click, prompt.submit],
fn=infer,
inputs=[
pre_prompt,
prompt,
seed,
randomize_seed,
num_inference_steps,
negative_prompt,
guidance_scale,
user_lora_selector,
gr.Slider(label="Selected LoRA Weight", minimum=0.5, maximum=3, step=0.1, value=1),
],
outputs=[result],
)
clear_button.click(lambda: "", outputs=[prompt, result])
gallery.select(
fn=update_selection,
inputs=[gr_sdxl_loras],
outputs=[user_lora_selector, pre_prompt],
)
gr.Markdown(
"""
## Unleash Your Creativity!
This showcase brings together the speed of Flash Diffusion and the artistic flair of Araminta K's models.
Craft your prompts, adjust the settings, and watch as AI brings your ideas to life in stunning detail.
Remember to use this tool ethically and respect copyright and individual privacy.
Enjoy exploring these unique artistic styles!
"""
)
demo.queue().launch() |