File size: 7,866 Bytes
f88f754
 
 
 
 
 
 
 
 
85da865
f88f754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0a20d
f88f754
 
29a59f2
 
 
f88f754
 
 
 
85da865
f88f754
 
 
 
85da865
 
 
f88f754
 
 
 
 
 
 
 
 
 
7d4c917
 
40d6202
f88f754
85da865
 
f88f754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d6202
f88f754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4c917
40d6202
f88f754
d8ef2e5
f88f754
 
 
 
 
 
 
 
 
7b0a20d
f88f754
 
 
 
 
 
 
85da865
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json
import random

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, LCMScheduler

# Load the JSON data
with open("sdxl_lora.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
        }
        for item in data
    ]

# Sort the loras by likes
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"

pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=DEVICE, dtype=torch.float16)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def update_selection(selected_state: gr.SelectData, gr_sdxl_loras):
    lora_id = gr_sdxl_loras[selected_state.index]["repo"]
    trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
    return lora_id, trigger_word

def load_lora_for_style(style_repo):
    pipe.unload_lora_weights()  # Unload any previously loaded weights
    pipe.load_lora_weights(style_repo, adapter_name="lora")

@spaces.GPU
def infer(
    pre_prompt,
    prompt,
    seed,
    randomize_seed,
    num_inference_steps,
    negative_prompt,
    guidance_scale,
    user_lora_selector,
    user_lora_weight,
    progress=gr.Progress(track_tqdm=True),
):
    # Load the appropriate LoRA weights
    load_lora_for_style(user_lora_selector)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if pre_prompt != "":
        prompt = f"{pre_prompt} {prompt}"

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return image

css = """
h1 {
    text-align: center;
    display:block;
}
p {
    text-align: justify;
    display:block;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        f"""
    # ⚑ FlashDiffusion: FlashLoRA ⚑
    This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) **on top of** existing LoRAs.
    
    The distillation method proposed in [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research.
    The LoRAs can be added **without** any retraining for similar results in most cases. Feel free to tweak the parameters and use your own LoRAs by giving a look at the [Github Repo](https://github.com/gojasper/flash-diffusion)
    """
    )
    gr.Markdown(
        "If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)"
    )

    # Index of selected LoRA
    gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
    # Serve as memory for currently loaded lora in pipe
    gr_lora_id = gr.State(value="")

    with gr.Row():
        with gr.Blocks():
            with gr.Column():
                user_lora_selector = gr.Textbox(
                    label="Current Selected LoRA",
                    max_lines=1,
                    interactive=False,
                )

                user_lora_weight = gr.Slider(
                    label="Selected LoRA Weight",
                    minimum=0.5,
                    maximum=3,
                    step=0.1,
                    value=1,
                )

                gallery = gr.Gallery(
                    value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
                    label="SDXL LoRA Gallery",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                )

        with gr.Column():
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                    scale=5,
                )

                run_button = gr.Button("Run", scale=1)

            result = gr.Image(label="Result", show_label=False)

            with gr.Accordion("Advanced Settings", open=False):
                pre_prompt = gr.Text(
                    label="Pre-Prompt",
                    show_label=True,
                    max_lines=1,
                    placeholder="Pre Prompt from the LoRA config",
                    container=True,
                    scale=5,
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=4,
                        maximum=8,
                        step=1,
                        value=4,
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=6,
                        step=0.5,
                        value=1,
                    )

                hint_negative = gr.Markdown(
                    """πŸ’‘ _Hint : Negative Prompt will only work with Guidance > 1 but the model was 
                    trained to be used with guidance = 1 (ie. without guidance).
                    Can degrade the results, use cautiously._"""
                )

                negative_prompt = gr.Text(
                    label="Negative Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter a negative Prompt",
                    container=False,
                )

    gr.on(
        [
            run_button.click,
            seed.change,
            randomize_seed.change,
            prompt.submit,
            negative_prompt.change,
            negative_prompt.submit,
            guidance_scale.change,
        ],
        fn=infer,
        inputs=[
            pre_prompt,
            prompt,
            seed,
            randomize_seed,
            num_inference_steps,
            negative_prompt,
            guidance_scale,
            user_lora_selector,
            user_lora_weight,
        ],
        outputs=[result],
    )

    gallery.select(
        fn=update_selection,
        inputs=[gr_sdxl_loras],
        outputs=[
            user_lora_selector,
            pre_prompt,
        ],
        show_progress="hidden",
    )

    gr.Markdown("**Disclaimer:**")
    gr.Markdown(
        "This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards."
    )

demo.queue().launch()