Spaces:
Runtime error
Runtime error
File size: 7,984 Bytes
e352af0 85a875d e352af0 d674c41 e352af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import numpy as np
import pandas as pd
import random
import solara
import torch
import torch.nn.functional as F
import ipyvue
import reacton
from solara.alias import rv as v
from typing import Any, Callable, Optional, TypeVar, Union, cast, overload
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained('bigcode/tiny_starcoder_py')
model = AutoModelForCausalLM.from_pretrained('bigcode/tiny_starcoder_py')
def use_change(el: reacton.core.Element, on_value: Callable[[Any], Any], enabled=True):
"""Trigger a callback when a blur events occurs or the enter key is pressed."""
on_value_ref = solara.use_ref(on_value)
on_value_ref.current = on_value
def add_events():
def on_change(widget, event, data):
if enabled:
on_value_ref.current(widget.v_model)
widget = cast(ipyvue.VueWidget, solara.get_widget(el))
if enabled:
widget.on_event("blur", on_change)
widget.on_event("keyup.enter", on_change)
def cleanup():
if enabled:
widget.on_event("blur", on_change, remove=True)
widget.on_event("keyup.enter", on_change, remove=True)
return cleanup
solara.use_effect(add_events, [enabled])
@solara.component
def InputTextarea(
label: str,
value: Union[str, solara.Reactive[str]] = "",
on_value: Callable[[str], None] = None,
disabled: bool = False,
password: bool = False,
continuous_update: bool = False,
error: Union[bool, str] = False,
message: Optional[str] = None,
):
reactive_value = solara.use_reactive(value, on_value)
del value, on_value
def set_value_cast(value):
reactive_value.value = str(value)
def on_v_model(value):
if continuous_update:
set_value_cast(value)
messages = []
if error and isinstance(error, str):
messages.append(error)
elif message:
messages.append(message)
text_area = v.Textarea(
v_model=reactive_value.value,
on_v_model=on_v_model,
label=label,
disabled=disabled,
type="password" if password else None,
error=bool(error),
messages=messages,
solo=True,
hide_details=True,
outlined=True,
rows=1,
auto_grow=True,
)
use_change(text_area, set_value_cast, enabled=not continuous_update)
return text_area
@solara.component
def my_component(tokens, i, color, df):
text = tokenizer.decode(tokens[0][i+1])
color = solara.use_reactive(f"{color}")
text_element = solara.Text(f"{text}", classes=[f"{color.value}"])
with solara.lab.ClickMenu(activator=text_element):
with solara.Column(gap="0px"):
def replace_token(text=text):
color.set("mystronggreen")
text1.value = f"{tokenizer.decode(tokens[0][1:i+1])}"+f"{df.iloc[1,1]}"+f"{tokenizer.decode(tokens[0][i+2:])}"
solara.Button(f"Replace "+ f"'{tokenizer.decode(tokens[0][i+1])}'".replace(" ", "␣")+" by "+f"'{df.iloc[1,1]}'".replace(" ", "␣"), on_click=replace_token, text=True, classes=["mybuttonclass"])
def add_token(text=text):
color.set("mystronggreen")
text1.value = f"{tokenizer.decode(tokens[0][1:i+1])}"+f"{df.iloc[1,1]}"+f"{tokenizer.decode(tokens[0][i+1:])}"
solara.Button(f"Add "+f"'{df.iloc[1,1]}'".replace(" ", "␣"), on_click=add_token, text=True, classes=["mybuttonclass"])
def delete_token(text=text):
color.set("mystronggreen")
text1.value = f"{tokenizer.decode(tokens[0][1:i+1])}"+f"{tokenizer.decode(tokens[0][i+2:])}"
solara.Button(f"Delete "+f"'{tokenizer.decode(tokens[0][i+1])}'".replace(" ", "␣"), on_click=delete_token, text=True, classes=["mybuttonclass"])
def ignore_token(text=text):
color.set("mystronggreen")
solara.Button("Ignore", on_click=ignore_token, text=True, classes=["mybuttonclass"])
text1 = solara.reactive("""def HelloWorld():\n print("Hello World)""")
@solara.component
def Page():
with solara.Column(margin="10"):
solara.Markdown("#Code Perplexity")
solara.Markdown("This is an educational tool where, for any given passage of code, it augments the original code with highlights and annotations that indicate how 'surprising' each token is to the model, as well as which other tokens the model deemed most likely to occur in its place.")
css = """
.mybuttonclass{
text-transform: none !important;
}
.mystronggreen{
background-color:#99ff99;
color:black!important;
padding:0px;
white-space-collapse:preserve;
}
.mygreen{
background-color:#ccffcc;
color:black!important;
white-space-collapse:preserve;
}
.myyellow{
background-color: #ffff99;
color:black!important;
white-space-collapse:preserve;
}
.myorange{
background-color: #ffe6cc;
color:black!important;
white-space-collapse:preserve;
}
.myred{
background-color:#ffcab0;
color:black!important;
white-space-collapse:preserve;
}
"""
InputTextarea("Enter text and press enter when you're done:", value=text1, continuous_update=True)
if text1.value != "":
with solara.Column():
with solara.Row(gap="0px", justify="left"):
tokens = tokenizer.encode(text1.value, return_tensors="pt")
tokens = torch.concat((torch.tensor([tokenizer.eos_token_id]), tokens[0])).reshape(1,-1)
full_list = []
partial_list = []
for token in tokens[0]:
if token != 216:
partial_list.append(token)
else:
partial_list.append(torch.tensor(216))
full_list.append(partial_list)
partial_list = []
if len(partial_list) != 0:
full_list.append(partial_list)
tokens = torch.cat((torch.tensor([tokenizer.eos_token_id]), tokens[0])).reshape(1,-1)
# tokens = tokens[0].reshape(1,-1)
i = 0
for j in range(len(full_list)):
with solara.Column():
with solara.Div(style="display: inline;"):
for k in range(len(full_list[j])):
outputs = model.generate(tokens[0][:i+1].reshape(1,-1), max_new_tokens=1, output_scores=True, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
scores = F.softmax(outputs.scores[0], dim=-1)
top_10 = torch.topk(scores, 10)
df = pd.DataFrame()
a = scores[0][tokens[0][i+1]]
b = top_10.values
df["probs"] = list(np.concatenate([a.reshape(-1,1).numpy()[0], b[0].numpy()]))
diff = 100*(df["probs"].iloc[0]-df["probs"].iloc[1])
if np.abs(diff)<1:
color = "mystronggreen"
elif np.abs(diff)<10:
color = "mygreen"
elif np.abs(diff)<20:
color = "myyellow"
elif np.abs(diff)<30:
color = "myorange"
else:
color = "myred"
df["probs"] = [f"{value:.2%}" for value in df["probs"].values]
aux = [tokenizer.decode(tokens[0][i+1])] + [tokenizer.decode(top_10.indices[0][i]) for i in range(10)]
df["predicted next token"] = aux
solara_df = solara.DataFrame(df, items_per_page=10)
with solara.Tooltip(solara_df, color="white"):
solara.Style(css)
if full_list[j][k] == 216:
solara.Text("↵", classes=[f"{color}"])
elif full_list[j][k] == 0:
solara.Text("")
else:
solara.Text(f"{tokenizer.decode(full_list[j][k])}", classes=[f"{color}"])
i+=1
|