File size: 7,051 Bytes
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import sys
sys.path.append('./')

from diffusers import (
    StableDiffusionPipeline,
    UNet2DConditionModel,
    DPMSolverMultistepScheduler,
)

from arc2face import CLIPTextModelWrapper, project_face_embs

import torch
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import random

import gradio as gr

# global variable
MAX_SEED = np.iinfo(np.int32).max
if torch.cuda.is_available():
    device = "cuda"
    dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float32


# download models
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2")

# Load face detection and recognition package
if device=="cuda":
    app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
else:
    app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Load pipeline
base_model = 'runwayml/stable-diffusion-v1-5'
encoder = CLIPTextModelWrapper.from_pretrained(
    'models', subfolder="encoder", torch_dtype=dtype
)
unet = UNet2DConditionModel.from_pretrained(
    'models', subfolder="arc2face", torch_dtype=dtype
)
pipeline = StableDiffusionPipeline.from_pretrained(
        base_model,
        text_encoder=encoder,
        unet=unet,
        torch_dtype=dtype,
        safety_checker=None
    )
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_example():
    case = [
        [
            './assets/examples/freeman.jpg',
        ],
        [
            './assets/examples/lily.png',
        ],
        [
            './assets/examples/joacquin.png',
        ],
        [
            './assets/examples/jackie.png',
        ], 
        [
            './assets/examples/freddie.png',
        ],
        [
            './assets/examples/hepburn.png',
        ],
    ]
    return case

def run_example(img_file):
    return generate_image(img_file, 25, 3, 23, 2)


def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)):

    if image_path is None:
        raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
    
    img = np.array(Image.open(image_path))[:,:,::-1]

    # Face detection and ID-embedding extraction
    faces = app.get(img)
    
    if len(faces) == 0:
        raise gr.Error(f"Face detection failed! Please try with another image")
    
    faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # select largest face (if more than one detected)
    id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device)
    id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True)   # normalize embedding
    id_emb = project_face_embs(pipeline, id_emb)    # pass throught the encoder
                    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    print("Start inference...")        
    images = pipeline(
        prompt_embeds=id_emb,
        num_inference_steps=num_steps,
        guidance_scale=guidance_scale, 
        num_images_per_prompt=num_images,
        generator=generator
    ).images

    return images

### Description
title = r"""
<h1>Arc2Face: A Foundation Model of Human Faces</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://arc2face.github.io/' target='_blank'><b>Arc2Face: A Foundation Model of Human Faces</b></a>.<br>

Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Click <b>Submit</b> to generate new images of the subject.
"""

Footer = r"""
---
📝 **Citation**
<br>
If you find Arc2Face helpful for your research, please consider citing our paper:
```bibtex
@misc{paraperas2024arc2face,
      title={Arc2Face: A Foundation Model of Human Faces}, 
      author={Foivos Paraperas Papantoniou and Alexandros Lattas and Stylianos Moschoglou and Jiankang Deng and Bernhard Kainz and Stefanos Zafeiriou},
      year={2024},
      eprint={2403.11641},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
"""

css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:

    # description
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            
            # upload face image
            img_file = gr.Image(label="Upload a photo with a face", type="filepath")
            
            submit = gr.Button("Submit", variant="primary")
            
            with gr.Accordion(open=False, label="Advanced Options"):
                num_steps = gr.Slider( 
                    label="Number of sample steps",
                    minimum=20,
                    maximum=100,
                    step=1,
                    value=25,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=3,
                )
                num_images = gr.Slider(
                    label="Number of output images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=2,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")

        submit.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=generate_image,
            inputs=[img_file, num_steps, guidance_scale, seed, num_images],
            outputs=[gallery]
        )
    
    
    gr.Examples(
        examples=get_example(),
        inputs=[img_file],
        run_on_click=True,
        fn=run_example,
        outputs=[gallery],
    )
    
    gr.Markdown(Footer)

demo.launch()