File size: 61,826 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "BERT-explainability.ipynb",
      "provenance": [],
      "authorship_tag": "ABX9TyOm8dIRrumd5XNcc+fntVA5",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/hila-chefer/Transformer-Explainability/blob/main/BERT_explainability.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YCdGaMuy56TA",
        "outputId": "8f802262-55eb-4366-b772-89c4756224b3"
      },
      "source": [
        "!git clone https://github.com/hila-chefer/Transformer-Explainability.git\n",
        "\n",
        "import os\n",
        "os.chdir(f'./Transformer-Explainability')\n",
        "\n",
        "!pip install -r requirements.txt\n",
        "!pip install captum"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "fatal: destination path 'Transformer-Explainability' already exists and is not an empty directory.\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Requirement already satisfied: Pillow>=8.1.1 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 1)) (9.4.0)\n",
            "Requirement already satisfied: einops==0.3.0 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 2)) (0.3.0)\n",
            "Requirement already satisfied: h5py==2.8.0 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 3)) (2.8.0)\n",
            "Requirement already satisfied: imageio==2.9.0 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 4)) (2.9.0)\n",
            "Collecting matplotlib==3.3.2\n",
            "  Using cached matplotlib-3.3.2-cp38-cp38-manylinux1_x86_64.whl (11.6 MB)\n",
            "Requirement already satisfied: opencv_python in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 6)) (4.6.0.66)\n",
            "Requirement already satisfied: scikit_image==0.17.2 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 7)) (0.17.2)\n",
            "Requirement already satisfied: scipy==1.5.2 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 8)) (1.5.2)\n",
            "Requirement already satisfied: sklearn in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 9)) (0.0.post1)\n",
            "Requirement already satisfied: torch==1.7.0 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 10)) (1.7.0)\n",
            "Requirement already satisfied: torchvision==0.8.1 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 11)) (0.8.1)\n",
            "Requirement already satisfied: tqdm==4.51.0 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 12)) (4.51.0)\n",
            "Requirement already satisfied: transformers==3.5.1 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 13)) (3.5.1)\n",
            "Requirement already satisfied: utils==1.0.1 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 14)) (1.0.1)\n",
            "Requirement already satisfied: Pygments>=2.7.4 in /usr/local/lib/python3.8/dist-packages (from -r requirements.txt (line 15)) (2.14.0)\n",
            "Requirement already satisfied: numpy>=1.7 in /usr/local/lib/python3.8/dist-packages (from h5py==2.8.0->-r requirements.txt (line 3)) (1.21.6)\n",
            "Requirement already satisfied: six in /usr/local/lib/python3.8/dist-packages (from h5py==2.8.0->-r requirements.txt (line 3)) (1.15.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2->-r requirements.txt (line 5)) (1.4.4)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2->-r requirements.txt (line 5)) (3.0.9)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2->-r requirements.txt (line 5)) (2.8.2)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2->-r requirements.txt (line 5)) (0.11.0)\n",
            "Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2->-r requirements.txt (line 5)) (2022.12.7)\n",
            "Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.8/dist-packages (from scikit_image==0.17.2->-r requirements.txt (line 7)) (3.0)\n",
            "Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.8/dist-packages (from scikit_image==0.17.2->-r requirements.txt (line 7)) (2022.10.10)\n",
            "Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from scikit_image==0.17.2->-r requirements.txt (line 7)) (1.4.1)\n",
            "Requirement already satisfied: dataclasses in /usr/local/lib/python3.8/dist-packages (from torch==1.7.0->-r requirements.txt (line 10)) (0.6)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch==1.7.0->-r requirements.txt (line 10)) (4.4.0)\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.8/dist-packages (from torch==1.7.0->-r requirements.txt (line 10)) (0.16.0)\n",
            "Requirement already satisfied: sacremoses in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (0.0.53)\n",
            "Requirement already satisfied: protobuf in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (3.19.6)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (3.9.0)\n",
            "Requirement already satisfied: sentencepiece==0.1.91 in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (0.1.91)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (21.3)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (2022.6.2)\n",
            "Requirement already satisfied: tokenizers==0.9.3 in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (0.9.3)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers==3.5.1->-r requirements.txt (line 13)) (2.25.1)\n",
            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==3.5.1->-r requirements.txt (line 13)) (4.0.0)\n",
            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==3.5.1->-r requirements.txt (line 13)) (1.24.3)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==3.5.1->-r requirements.txt (line 13)) (2.10)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.8/dist-packages (from sacremoses->transformers==3.5.1->-r requirements.txt (line 13)) (1.2.0)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.8/dist-packages (from sacremoses->transformers==3.5.1->-r requirements.txt (line 13)) (7.1.2)\n",
            "Installing collected packages: matplotlib\n",
            "  Attempting uninstall: matplotlib\n",
            "    Found existing installation: matplotlib 3.6.3\n",
            "    Uninstalling matplotlib-3.6.3:\n",
            "      Successfully uninstalled matplotlib-3.6.3\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "fastai 2.7.10 requires torchvision>=0.8.2, but you have torchvision 0.8.1 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0mSuccessfully installed matplotlib-3.3.2\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Requirement already satisfied: captum in /usr/local/lib/python3.8/dist-packages (0.6.0)\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.8/dist-packages (from captum) (3.3.2)\n",
            "Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.8/dist-packages (from captum) (1.7.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from captum) (1.21.6)\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum) (0.16.0)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum) (4.4.0)\n",
            "Requirement already satisfied: dataclasses in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum) (0.6)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (0.11.0)\n",
            "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (9.4.0)\n",
            "Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (2022.12.7)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (1.4.4)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (3.0.9)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum) (2.8.2)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.1->matplotlib->captum) (1.15.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install captum==0.6.0\n",
        "!pip install matplotlib==3.3.2"
      ],
      "metadata": {
        "id": "zDPnh4lofcNw",
        "outputId": "3d585bbc-ff3b-4a09-b5bf-57bb4d46e830",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Requirement already satisfied: captum==0.6.0 in /usr/local/lib/python3.8/dist-packages (0.6.0)\n",
            "Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.8/dist-packages (from captum==0.6.0) (1.7.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from captum==0.6.0) (1.21.6)\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.8/dist-packages (from captum==0.6.0) (3.6.3)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum==0.6.0) (4.4.0)\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum==0.6.0) (0.16.0)\n",
            "Requirement already satisfied: dataclasses in /usr/local/lib/python3.8/dist-packages (from torch>=1.6->captum==0.6.0) (0.6)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (1.4.4)\n",
            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (1.0.7)\n",
            "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (9.4.0)\n",
            "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (2.8.2)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (21.3)\n",
            "Requirement already satisfied: pyparsing>=2.2.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (3.0.9)\n",
            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (4.38.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum==0.6.0) (0.11.0)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7->matplotlib->captum==0.6.0) (1.15.0)\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting matplotlib==3.3.2\n",
            "  Using cached matplotlib-3.3.2-cp38-cp38-manylinux1_x86_64.whl (11.6 MB)\n",
            "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (9.4.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (0.11.0)\n",
            "Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (1.21.6)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (3.0.9)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (1.4.4)\n",
            "Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (2022.12.7)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib==3.3.2) (2.8.2)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.1->matplotlib==3.3.2) (1.15.0)\n",
            "Installing collected packages: matplotlib\n",
            "  Attempting uninstall: matplotlib\n",
            "    Found existing installation: matplotlib 3.6.3\n",
            "    Uninstalling matplotlib-3.6.3:\n",
            "      Successfully uninstalled matplotlib-3.6.3\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "fastai 2.7.10 requires torchvision>=0.8.2, but you have torchvision 0.8.1 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0mSuccessfully installed matplotlib-3.3.2\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "4-XGl_Zw6Aht"
      },
      "source": [
        "from transformers import BertTokenizer\n",
        "from BERT_explainability.modules.BERT.ExplanationGenerator import Generator\n",
        "from BERT_explainability.modules.BERT.BertForSequenceClassification import BertForSequenceClassification\n",
        "from transformers import BertTokenizer\n",
        "from BERT_explainability.modules.BERT.ExplanationGenerator import Generator\n",
        "from transformers import AutoTokenizer\n",
        "\n",
        "from captum.attr import visualization\n",
        "import torch"
      ],
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "VakYjrkC6C3S"
      },
      "source": [
        "model = BertForSequenceClassification.from_pretrained(\"textattack/bert-base-uncased-SST-2\").to(\"cuda\")\n",
        "model.eval()\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"textattack/bert-base-uncased-SST-2\")\n",
        "# initialize the explanations generator\n",
        "explanations = Generator(model)\n",
        "\n",
        "classifications = [\"NEGATIVE\", \"POSITIVE\"]\n"
      ],
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jGRp376FPOvV"
      },
      "source": [
        "#Positive sentiment example"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "uSLZtv546H2z",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 219
        },
        "outputId": "26712e90-0b77-40b0-a908-fef13dd88bcd"
      },
      "source": [
        "# encode a sentence\n",
        "text_batch = [\"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great.\"]\n",
        "encoding = tokenizer(text_batch, return_tensors='pt')\n",
        "input_ids = encoding['input_ids'].to(\"cuda\")\n",
        "attention_mask = encoding['attention_mask'].to(\"cuda\")\n",
        "\n",
        "# true class is positive - 1\n",
        "true_class = 1\n",
        "\n",
        "# generate an explanation for the input\n",
        "expl = explanations.generate_LRP(input_ids=input_ids, attention_mask=attention_mask, start_layer=0)[0]\n",
        "# normalize scores\n",
        "expl = (expl - expl.min()) / (expl.max() - expl.min())\n",
        "\n",
        "# get the model classification\n",
        "output = torch.nn.functional.softmax(model(input_ids=input_ids, attention_mask=attention_mask)[0], dim=-1)\n",
        "classification = output.argmax(dim=-1).item()\n",
        "# get class name\n",
        "class_name = classifications[classification]\n",
        "# if the classification is negative, higher explanation scores are more negative\n",
        "# flip for visualization\n",
        "if class_name == \"NEGATIVE\":\n",
        "  expl *= (-1)\n",
        "\n",
        "tokens = tokenizer.convert_ids_to_tokens(input_ids.flatten())\n",
        "print([(tokens[i], expl[i].item()) for i in range(len(tokens))])\n",
        "vis_data_records = [visualization.VisualizationDataRecord(\n",
        "                                expl,\n",
        "                                output[0][classification],\n",
        "                                classification,\n",
        "                                true_class,\n",
        "                                true_class,\n",
        "                                1,       \n",
        "                                tokens,\n",
        "                                1)]\n",
        "visualization.visualize_text(vis_data_records)"
      ],
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[('[CLS]', 0.0), ('this', 0.4267549514770508), ('movie', 0.30920878052711487), ('was', 0.2684089243412018), ('the', 0.33637329936027527), ('best', 0.6280889511108398), ('movie', 0.28546375036239624), ('i', 0.1863601952791214), ('have', 0.10115814208984375), ('ever', 0.1419338583946228), ('seen', 0.1898290067911148), ('!', 0.5944811105728149), ('some', 0.003896803595125675), ('scenes', 0.033401958644390106), ('were', 0.018588582053780556), ('ridiculous', 0.018908796831965446), (',', 0.0), ('but', 0.42920616269111633), ('acting', 0.43855082988739014), ('was', 0.500239372253418), ('great', 1.0), ('.', 0.014817383140325546), ('[SEP]', 0.0868983045220375)]\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 85%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 69%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> best                    </font></mark><mark style=\"background-color: hsl(120, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> have                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ever                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seen                    </font></mark><mark style=\"background-color: hsl(120, 75%, 71%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> !                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> some                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> scenes                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ridiculous                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> but                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> acting                    </font></mark><mark style=\"background-color: hsl(120, 75%, 75%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 50%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> great                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 85%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 69%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> best                    </font></mark><mark style=\"background-color: hsl(120, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> have                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ever                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seen                    </font></mark><mark style=\"background-color: hsl(120, 75%, 71%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> !                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> some                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> scenes                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ridiculous                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> but                    </font></mark><mark style=\"background-color: hsl(120, 75%, 79%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> acting                    </font></mark><mark style=\"background-color: hsl(120, 75%, 75%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 50%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> great                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {},
          "execution_count": 12
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "oO_k1BtSPVt3"
      },
      "source": [
        "#Negative sentiment example"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 219
        },
        "id": "gD4xcvovI1KI",
        "outputId": "e4a50a94-da4c-460e-b602-052b09cec28f"
      },
      "source": [
        "# encode a sentence\n",
        "text_batch = [\"I really didn't like this movie. Some of the actors were good, but overall the movie was boring.\"]\n",
        "encoding = tokenizer(text_batch, return_tensors='pt')\n",
        "input_ids = encoding['input_ids'].to(\"cuda\")\n",
        "attention_mask = encoding['attention_mask'].to(\"cuda\")\n",
        "\n",
        "# generate an explanation for the input\n",
        "expl = explanations.generate_LRP(input_ids=input_ids, attention_mask=attention_mask, start_layer=0)[0]\n",
        "# normalize scores\n",
        "expl = (expl - expl.min()) / (expl.max() - expl.min())\n",
        "\n",
        "# get the model classification\n",
        "output = torch.nn.functional.softmax(model(input_ids=input_ids, attention_mask=attention_mask)[0], dim=-1)\n",
        "classification = output.argmax(dim=-1).item()\n",
        "# get class name\n",
        "class_name = classifications[classification]\n",
        "# if the classification is negative, higher explanation scores are more negative\n",
        "# flip for visualization\n",
        "if class_name == \"NEGATIVE\":\n",
        "  expl *= (-1)\n",
        "\n",
        "tokens = tokenizer.convert_ids_to_tokens(input_ids.flatten())\n",
        "print([(tokens[i], expl[i].item()) for i in range(len(tokens))])\n",
        "vis_data_records = [visualization.VisualizationDataRecord(\n",
        "                                expl,\n",
        "                                output[0][classification],\n",
        "                                classification,\n",
        "                                1,\n",
        "                                1,\n",
        "                                1,       \n",
        "                                tokens,\n",
        "                                1)]\n",
        "visualization.visualize_text(vis_data_records)"
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[('[CLS]', -0.0), ('i', -0.19109757244586945), ('really', -0.1888734996318817), ('didn', -0.2894313633441925), (\"'\", -0.006574898026883602), ('t', -0.36788827180862427), ('like', -0.15249046683311462), ('this', -0.18922168016433716), ('movie', -0.0404353104531765), ('.', -0.019592661410570145), ('some', -0.02311306819319725), ('of', -0.0), ('the', -0.02295113168656826), ('actors', -0.09577538073062897), ('were', -0.013370633125305176), ('good', -0.0323222391307354), (',', -0.004366681911051273), ('but', -0.05878860130906105), ('overall', -0.33596664667129517), ('the', -0.21820111572742462), ('movie', -0.05482065677642822), ('was', -0.6248231530189514), ('boring', -1.0), ('.', -0.031107747927308083), ('[SEP]', -0.052539654076099396)]\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> really                    </font></mark><mark style=\"background-color: hsl(0, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> didn                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(0, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> some                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> actors                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> good                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> but                    </font></mark><mark style=\"background-color: hsl(0, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> overall                    </font></mark><mark style=\"background-color: hsl(0, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 76%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(0, 75%, 60%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> boring                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> really                    </font></mark><mark style=\"background-color: hsl(0, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> didn                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(0, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> some                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> actors                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> good                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> but                    </font></mark><mark style=\"background-color: hsl(0, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> overall                    </font></mark><mark style=\"background-color: hsl(0, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 76%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(0, 75%, 60%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> boring                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {},
          "execution_count": 13
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Choosing class for visualization example"
      ],
      "metadata": {
        "id": "UUn2_SMPNG-Y"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# encode a sentence\n",
        "text_batch = [\"I hate that I love you.\"]\n",
        "encoding = tokenizer(text_batch, return_tensors='pt')\n",
        "input_ids = encoding['input_ids'].to(\"cuda\")\n",
        "attention_mask = encoding['attention_mask'].to(\"cuda\")\n",
        "\n",
        "# true class is positive - 1\n",
        "true_class = 1\n",
        "\n",
        "# generate an explanation for the input\n",
        "target_class = 0\n",
        "expl = explanations.generate_LRP(input_ids=input_ids, attention_mask=attention_mask, start_layer=11, index=target_class)[0]\n",
        "# normalize scores\n",
        "expl = (expl - expl.min()) / (expl.max() - expl.min())\n",
        "\n",
        "# get the model classification\n",
        "output = torch.nn.functional.softmax(model(input_ids=input_ids, attention_mask=attention_mask)[0], dim=-1)\n",
        "\n",
        "# get class name\n",
        "class_name = classifications[target_class]\n",
        "# if the classification is negative, higher explanation scores are more negative\n",
        "# flip for visualization\n",
        "if class_name == \"NEGATIVE\":\n",
        "  expl *= (-1)\n",
        "\n",
        "tokens = tokenizer.convert_ids_to_tokens(input_ids.flatten())\n",
        "print([(tokens[i], expl[i].item()) for i in range(len(tokens))])\n",
        "vis_data_records = [visualization.VisualizationDataRecord(\n",
        "                                expl,\n",
        "                                output[0][classification],\n",
        "                                classification,\n",
        "                                true_class,\n",
        "                                true_class,\n",
        "                                1,       \n",
        "                                tokens,\n",
        "                                1)]\n",
        "visualization.visualize_text(vis_data_records)"
      ],
      "metadata": {
        "id": "VQVmMFnzhPoV",
        "outputId": "26a43f8a-340c-4821-b39c-80105a565810",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 219
        }
      },
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[('[CLS]', -0.0), ('i', -0.19790242612361908), ('hate', -1.0), ('that', -0.40287283062934875), ('i', -0.12505637109279633), ('love', -0.1307140290737152), ('you', -0.05467141419649124), ('.', -6.108225989009952e-06), ('[SEP]', -0.0)]\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (0.91)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 60%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> hate                    </font></mark><mark style=\"background-color: hsl(0, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> love                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (0.91)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 60%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> hate                    </font></mark><mark style=\"background-color: hsl(0, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> love                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {},
          "execution_count": 14
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# encode a sentence\n",
        "text_batch = [\"I hate that I love you.\"]\n",
        "encoding = tokenizer(text_batch, return_tensors='pt')\n",
        "input_ids = encoding['input_ids'].to(\"cuda\")\n",
        "attention_mask = encoding['attention_mask'].to(\"cuda\")\n",
        "\n",
        "# true class is positive - 1\n",
        "true_class = 1\n",
        "\n",
        "# generate an explanation for the input\n",
        "target_class = 1\n",
        "expl = explanations.generate_LRP(input_ids=input_ids, attention_mask=attention_mask, start_layer=11, index=target_class)[0]\n",
        "# normalize scores\n",
        "expl = (expl - expl.min()) / (expl.max() - expl.min())\n",
        "\n",
        "# get the model classification\n",
        "output = torch.nn.functional.softmax(model(input_ids=input_ids, attention_mask=attention_mask)[0], dim=-1)\n",
        "\n",
        "# get class name\n",
        "class_name = classifications[target_class]\n",
        "# if the classification is negative, higher explanation scores are more negative\n",
        "# flip for visualization\n",
        "if class_name == \"NEGATIVE\":\n",
        "  expl *= (-1)\n",
        "\n",
        "tokens = tokenizer.convert_ids_to_tokens(input_ids.flatten())\n",
        "print([(tokens[i], expl[i].item()) for i in range(len(tokens))])\n",
        "vis_data_records = [visualization.VisualizationDataRecord(\n",
        "                                expl,\n",
        "                                output[0][classification],\n",
        "                                classification,\n",
        "                                true_class,\n",
        "                                true_class,\n",
        "                                1,       \n",
        "                                tokens,\n",
        "                                1)]\n",
        "visualization.visualize_text(vis_data_records)"
      ],
      "metadata": {
        "id": "WiQAWw0-imCg",
        "outputId": "a8c66996-dcd0-4132-a8b0-2346d9bf9c7b",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 219
        }
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[('[CLS]', 0.0), ('i', 0.2725590765476227), ('hate', 0.17270179092884064), ('that', 0.23211266100406647), ('i', 0.17642731964588165), ('love', 1.0), ('you', 0.2465524971485138), ('.', 0.0), ('[SEP]', 0.00015733683540020138)]\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (0.91)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> hate                    </font></mark><mark style=\"background-color: hsl(120, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 50%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> love                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>0 (0.91)</b></text></td><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>1.00</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> hate                    </font></mark><mark style=\"background-color: hsl(120, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 50%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> love                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
            ]
          },
          "metadata": {},
          "execution_count": 15
        }
      ]
    }
  ]
}