File size: 10,022 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

"""Encoding Data Parallel"""
import functools
import threading

import torch
import torch.cuda.comm as comm
from torch.autograd import Function, Variable
from torch.nn.parallel._functions import Broadcast, ReduceAddCoalesced
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import get_a_var

torch_ver = torch.__version__[:3]

__all__ = [
    "allreduce",
    "DataParallelModel",
    "DataParallelCriterion",
    "patch_replication_callback",
]


def allreduce(*inputs):
    """Cross GPU all reduce autograd operation for calculate mean and
    variance in SyncBN.
    """
    return AllReduce.apply(*inputs)


class AllReduce(Function):
    @staticmethod
    def forward(ctx, num_inputs, *inputs):
        ctx.num_inputs = num_inputs
        ctx.target_gpus = [
            inputs[i].get_device() for i in range(0, len(inputs), num_inputs)
        ]
        inputs = [inputs[i : i + num_inputs] for i in range(0, len(inputs), num_inputs)]
        # sort before reduce sum
        inputs = sorted(inputs, key=lambda i: i[0].get_device())
        results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0])
        outputs = comm.broadcast_coalesced(results, ctx.target_gpus)
        return tuple([t for tensors in outputs for t in tensors])

    @staticmethod
    def backward(ctx, *inputs):
        inputs = [i.data for i in inputs]
        inputs = [
            inputs[i : i + ctx.num_inputs]
            for i in range(0, len(inputs), ctx.num_inputs)
        ]
        results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0])
        outputs = comm.broadcast_coalesced(results, ctx.target_gpus)
        return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors])


class Reduce(Function):
    @staticmethod
    def forward(ctx, *inputs):
        ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))]
        inputs = sorted(inputs, key=lambda i: i.get_device())
        return comm.reduce_add(inputs)

    @staticmethod
    def backward(ctx, gradOutput):
        return Broadcast.apply(ctx.target_gpus, gradOutput)


class DataParallelModel(DataParallel):
    """Implements data parallelism at the module level.

    This container parallelizes the application of the given module by
    splitting the input across the specified devices by chunking in the
    batch dimension.
    In the forward pass, the module is replicated on each device,
    and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module.
    Note that the outputs are not gathered, please use compatible
    :class:`encoding.parallel.DataParallelCriterion`.

    The batch size should be larger than the number of GPUs used. It should
    also be an integer multiple of the number of GPUs so that each chunk is
    the same size (so that each GPU processes the same number of samples).

    Args:
        module: module to be parallelized
        device_ids: CUDA devices (default: all devices)

    Reference:
        Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
        Amit Agrawal. “Context Encoding for Semantic Segmentation.
        *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*

    Example::

        >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
        >>> y = net(x)
    """

    def gather(self, outputs, output_device):
        return outputs

    def replicate(self, module, device_ids):
        modules = super(DataParallelModel, self).replicate(module, device_ids)
        execute_replication_callbacks(modules)
        return modules


class DataParallelCriterion(DataParallel):
    """
    Calculate loss in multiple-GPUs, which balance the memory usage for
    Semantic Segmentation.

    The targets are splitted across the specified devices by chunking in
    the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`.

    Reference:
        Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
        Amit Agrawal. “Context Encoding for Semantic Segmentation.
        *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*

    Example::

        >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
        >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2])
        >>> y = net(x)
        >>> loss = criterion(y, target)
    """

    def forward(self, inputs, *targets, **kwargs):
        # input should be already scatterd
        # scattering the targets instead
        if not self.device_ids:
            return self.module(inputs, *targets, **kwargs)
        targets, kwargs = self.scatter(targets, kwargs, self.device_ids)
        if len(self.device_ids) == 1:
            return self.module(inputs, *targets[0], **kwargs[0])
        replicas = self.replicate(self.module, self.device_ids[: len(inputs)])
        outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs)
        return Reduce.apply(*outputs) / len(outputs)
        # return self.gather(outputs, self.output_device).mean()


def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None):
    assert len(modules) == len(inputs)
    assert len(targets) == len(inputs)
    if kwargs_tup:
        assert len(modules) == len(kwargs_tup)
    else:
        kwargs_tup = ({},) * len(modules)
    if devices is not None:
        assert len(modules) == len(devices)
    else:
        devices = [None] * len(modules)

    lock = threading.Lock()
    results = {}
    if torch_ver != "0.3":
        grad_enabled = torch.is_grad_enabled()

    def _worker(i, module, input, target, kwargs, device=None):
        if torch_ver != "0.3":
            torch.set_grad_enabled(grad_enabled)
        if device is None:
            device = get_a_var(input).get_device()
        try:
            with torch.cuda.device(device):
                # this also avoids accidental slicing of `input` if it is a Tensor
                if not isinstance(input, (list, tuple)):
                    input = (input,)
                if type(input) != type(target):
                    if isinstance(target, tuple):
                        input = tuple(input)
                    elif isinstance(target, list):
                        input = list(input)
                    else:
                        raise Exception("Types problem")

                output = module(*(input + target), **kwargs)
            with lock:
                results[i] = output
        except Exception as e:
            with lock:
                results[i] = e

    if len(modules) > 1:
        threads = [
            threading.Thread(
                target=_worker,
                args=(i, module, input, target, kwargs, device),
            )
            for i, (module, input, target, kwargs, device) in enumerate(
                zip(modules, inputs, targets, kwargs_tup, devices)
            )
        ]

        for thread in threads:
            thread.start()
        for thread in threads:
            thread.join()
    else:
        _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])

    outputs = []
    for i in range(len(inputs)):
        output = results[i]
        if isinstance(output, Exception):
            raise output
        outputs.append(output)
    return outputs


###########################################################################
# Adapted from Synchronized-BatchNorm-PyTorch.
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
#
class CallbackContext(object):
    pass


def execute_replication_callbacks(modules):
    """
    Execute an replication callback `__data_parallel_replicate__` on each module created
    by original replication.

    The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`

    Note that, as all modules are isomorphism, we assign each sub-module with a context
    (shared among multiple copies of this module on different devices).
    Through this context, different copies can share some information.

    We guarantee that the callback on the master copy (the first copy) will be called ahead
    of calling the callback of any slave copies.
    """
    master_copy = modules[0]
    nr_modules = len(list(master_copy.modules()))
    ctxs = [CallbackContext() for _ in range(nr_modules)]

    for i, module in enumerate(modules):
        for j, m in enumerate(module.modules()):
            if hasattr(m, "__data_parallel_replicate__"):
                m.__data_parallel_replicate__(ctxs[j], i)


def patch_replication_callback(data_parallel):
    """
    Monkey-patch an existing `DataParallel` object. Add the replication callback.
    Useful when you have customized `DataParallel` implementation.

    Examples:
        > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
        > sync_bn = DataParallel(sync_bn, device_ids=[0, 1])
        > patch_replication_callback(sync_bn)
        # this is equivalent to
        > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
        > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
    """

    assert isinstance(data_parallel, DataParallel)

    old_replicate = data_parallel.replicate

    @functools.wraps(old_replicate)
    def new_replicate(module, device_ids):
        modules = old_replicate(module, device_ids)
        execute_replication_callbacks(modules)
        return modules

    data_parallel.replicate = new_replicate