File size: 11,660 Bytes
c4b2b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import argparse
import os
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from data.Imagenet import Imagenet_Segmentation
from numpy import *
from PIL import Image
from sklearn.metrics import precision_recall_curve
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import render
from utils.iou import IoU
from utils.metrices import *
from utils.saver import Saver
from ViT_explanation_generator import LRP, Baselines
from ViT_LRP import vit_base_patch16_224 as vit_LRP
from ViT_new import vit_base_patch16_224
from ViT_orig_LRP import vit_base_patch16_224 as vit_orig_LRP
plt.switch_backend("agg")
# hyperparameters
num_workers = 0
batch_size = 1
cls = [
"airplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"dining table",
"dog",
"horse",
"motobike",
"person",
"potted plant",
"sheep",
"sofa",
"train",
"tv",
]
# Args
parser = argparse.ArgumentParser(description="Training multi-class classifier")
parser.add_argument(
"--arc", type=str, default="vgg", metavar="N", help="Model architecture"
)
parser.add_argument(
"--train_dataset", type=str, default="imagenet", metavar="N", help="Testing Dataset"
)
parser.add_argument(
"--method",
type=str,
default="grad_rollout",
choices=[
"rollout",
"lrp",
"transformer_attribution",
"full_lrp",
"lrp_last_layer",
"attn_last_layer",
"attn_gradcam",
],
help="",
)
parser.add_argument("--thr", type=float, default=0.0, help="threshold")
parser.add_argument("--K", type=int, default=1, help="new - top K results")
parser.add_argument("--save-img", action="store_true", default=False, help="")
parser.add_argument("--no-ia", action="store_true", default=False, help="")
parser.add_argument("--no-fx", action="store_true", default=False, help="")
parser.add_argument("--no-fgx", action="store_true", default=False, help="")
parser.add_argument("--no-m", action="store_true", default=False, help="")
parser.add_argument("--no-reg", action="store_true", default=False, help="")
parser.add_argument("--is-ablation", type=bool, default=False, help="")
parser.add_argument("--imagenet-seg-path", type=str, required=True)
args = parser.parse_args()
args.checkname = args.method + "_" + args.arc
alpha = 2
cuda = torch.cuda.is_available()
device = torch.device("cuda" if cuda else "cpu")
# Define Saver
saver = Saver(args)
saver.results_dir = os.path.join(saver.experiment_dir, "results")
if not os.path.exists(saver.results_dir):
os.makedirs(saver.results_dir)
if not os.path.exists(os.path.join(saver.results_dir, "input")):
os.makedirs(os.path.join(saver.results_dir, "input"))
if not os.path.exists(os.path.join(saver.results_dir, "explain")):
os.makedirs(os.path.join(saver.results_dir, "explain"))
args.exp_img_path = os.path.join(saver.results_dir, "explain/img")
if not os.path.exists(args.exp_img_path):
os.makedirs(args.exp_img_path)
args.exp_np_path = os.path.join(saver.results_dir, "explain/np")
if not os.path.exists(args.exp_np_path):
os.makedirs(args.exp_np_path)
# Data
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
test_img_trans = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
normalize,
]
)
test_lbl_trans = transforms.Compose(
[
transforms.Resize((224, 224), Image.NEAREST),
]
)
ds = Imagenet_Segmentation(
args.imagenet_seg_path, transform=test_img_trans, target_transform=test_lbl_trans
)
dl = DataLoader(
ds, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=False
)
# Model
model = vit_base_patch16_224(pretrained=True).cuda()
baselines = Baselines(model)
# LRP
model_LRP = vit_LRP(pretrained=True).cuda()
model_LRP.eval()
lrp = LRP(model_LRP)
# orig LRP
model_orig_LRP = vit_orig_LRP(pretrained=True).cuda()
model_orig_LRP.eval()
orig_lrp = LRP(model_orig_LRP)
metric = IoU(2, ignore_index=-1)
iterator = tqdm(dl)
model.eval()
def compute_pred(output):
pred = output.data.max(1, keepdim=True)[
1
] # get the index of the max log-probability
# pred[0, 0] = 282
# print('Pred cls : ' + str(pred))
T = pred.squeeze().cpu().numpy()
T = np.expand_dims(T, 0)
T = (T[:, np.newaxis] == np.arange(1000)) * 1.0
T = torch.from_numpy(T).type(torch.FloatTensor)
Tt = T.cuda()
return Tt
def eval_batch(image, labels, evaluator, index):
evaluator.zero_grad()
# Save input image
if args.save_img:
img = image[0].permute(1, 2, 0).data.cpu().numpy()
img = 255 * (img - img.min()) / (img.max() - img.min())
img = img.astype("uint8")
Image.fromarray(img, "RGB").save(
os.path.join(saver.results_dir, "input/{}_input.png".format(index))
)
Image.fromarray(
(labels.repeat(3, 1, 1).permute(1, 2, 0).data.cpu().numpy() * 255).astype(
"uint8"
),
"RGB",
).save(os.path.join(saver.results_dir, "input/{}_mask.png".format(index)))
image.requires_grad = True
image = image.requires_grad_()
predictions = evaluator(image)
# segmentation test for the rollout baseline
if args.method == "rollout":
Res = baselines.generate_rollout(image.cuda(), start_layer=1).reshape(
batch_size, 1, 14, 14
)
# segmentation test for the LRP baseline (this is full LRP, not partial)
elif args.method == "full_lrp":
Res = orig_lrp.generate_LRP(image.cuda(), method="full").reshape(
batch_size, 1, 224, 224
)
# segmentation test for our method
elif args.method == "transformer_attribution":
Res = lrp.generate_LRP(
image.cuda(), start_layer=1, method="transformer_attribution"
).reshape(batch_size, 1, 14, 14)
# segmentation test for the partial LRP baseline (last attn layer)
elif args.method == "lrp_last_layer":
Res = orig_lrp.generate_LRP(
image.cuda(), method="last_layer", is_ablation=args.is_ablation
).reshape(batch_size, 1, 14, 14)
# segmentation test for the raw attention baseline (last attn layer)
elif args.method == "attn_last_layer":
Res = orig_lrp.generate_LRP(
image.cuda(), method="last_layer_attn", is_ablation=args.is_ablation
).reshape(batch_size, 1, 14, 14)
# segmentation test for the GradCam baseline (last attn layer)
elif args.method == "attn_gradcam":
Res = baselines.generate_cam_attn(image.cuda()).reshape(batch_size, 1, 14, 14)
if args.method != "full_lrp":
# interpolate to full image size (224,224)
Res = torch.nn.functional.interpolate(
Res, scale_factor=16, mode="bilinear"
).cuda()
# threshold between FG and BG is the mean
Res = (Res - Res.min()) / (Res.max() - Res.min())
ret = Res.mean()
Res_1 = Res.gt(ret).type(Res.type())
Res_0 = Res.le(ret).type(Res.type())
Res_1_AP = Res
Res_0_AP = 1 - Res
Res_1[Res_1 != Res_1] = 0
Res_0[Res_0 != Res_0] = 0
Res_1_AP[Res_1_AP != Res_1_AP] = 0
Res_0_AP[Res_0_AP != Res_0_AP] = 0
# TEST
pred = Res.clamp(min=args.thr) / Res.max()
pred = pred.view(-1).data.cpu().numpy()
target = labels.view(-1).data.cpu().numpy()
# print("target", target.shape)
output = torch.cat((Res_0, Res_1), 1)
output_AP = torch.cat((Res_0_AP, Res_1_AP), 1)
if args.save_img:
# Save predicted mask
mask = F.interpolate(Res_1, [64, 64], mode="bilinear")
mask = mask[0].squeeze().data.cpu().numpy()
# mask = Res_1[0].squeeze().data.cpu().numpy()
mask = 255 * mask
mask = mask.astype("uint8")
imageio.imsave(
os.path.join(args.exp_img_path, "mask_" + str(index) + ".jpg"), mask
)
relevance = F.interpolate(Res, [64, 64], mode="bilinear")
relevance = relevance[0].permute(1, 2, 0).data.cpu().numpy()
# relevance = Res[0].permute(1, 2, 0).data.cpu().numpy()
hm = np.sum(relevance, axis=-1)
maps = (render.hm_to_rgb(hm, scaling=3, sigma=1, cmap="seismic") * 255).astype(
np.uint8
)
imageio.imsave(
os.path.join(args.exp_img_path, "heatmap_" + str(index) + ".jpg"), maps
)
# Evaluate Segmentation
batch_inter, batch_union, batch_correct, batch_label = 0, 0, 0, 0
batch_ap, batch_f1 = 0, 0
# Segmentation resutls
correct, labeled = batch_pix_accuracy(output[0].data.cpu(), labels[0])
inter, union = batch_intersection_union(output[0].data.cpu(), labels[0], 2)
batch_correct += correct
batch_label += labeled
batch_inter += inter
batch_union += union
# print("output", output.shape)
# print("ap labels", labels.shape)
# ap = np.nan_to_num(get_ap_scores(output, labels))
ap = np.nan_to_num(get_ap_scores(output_AP, labels))
f1 = np.nan_to_num(get_f1_scores(output[0, 1].data.cpu(), labels[0]))
batch_ap += ap
batch_f1 += f1
return (
batch_correct,
batch_label,
batch_inter,
batch_union,
batch_ap,
batch_f1,
pred,
target,
)
total_inter, total_union, total_correct, total_label = (
np.int64(0),
np.int64(0),
np.int64(0),
np.int64(0),
)
total_ap, total_f1 = [], []
predictions, targets = [], []
for batch_idx, (image, labels) in enumerate(iterator):
if args.method == "blur":
images = (image[0].cuda(), image[1].cuda())
else:
images = image.cuda()
labels = labels.cuda()
# print("image", image.shape)
# print("lables", labels.shape)
correct, labeled, inter, union, ap, f1, pred, target = eval_batch(
images, labels, model, batch_idx
)
predictions.append(pred)
targets.append(target)
total_correct += correct.astype("int64")
total_label += labeled.astype("int64")
total_inter += inter.astype("int64")
total_union += union.astype("int64")
total_ap += [ap]
total_f1 += [f1]
pixAcc = (
np.float64(1.0)
* total_correct
/ (np.spacing(1, dtype=np.float64) + total_label)
)
IoU = (
np.float64(1.0) * total_inter / (np.spacing(1, dtype=np.float64) + total_union)
)
mIoU = IoU.mean()
mAp = np.mean(total_ap)
mF1 = np.mean(total_f1)
iterator.set_description(
"pixAcc: %.4f, mIoU: %.4f, mAP: %.4f, mF1: %.4f" % (pixAcc, mIoU, mAp, mF1)
)
predictions = np.concatenate(predictions)
targets = np.concatenate(targets)
pr, rc, thr = precision_recall_curve(targets, predictions)
np.save(os.path.join(saver.experiment_dir, "precision.npy"), pr)
np.save(os.path.join(saver.experiment_dir, "recall.npy"), rc)
plt.figure()
plt.plot(rc, pr)
plt.savefig(os.path.join(saver.experiment_dir, "PR_curve_{}.png".format(args.method)))
txtfile = os.path.join(saver.experiment_dir, "result_mIoU_%.4f.txt" % mIoU)
# txtfile = 'result_mIoU_%.4f.txt' % mIoU
fh = open(txtfile, "w")
print("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
print("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
print("Mean AP over %d classes: %.4f\n" % (2, mAp))
print("Mean F1 over %d classes: %.4f\n" % (2, mF1))
fh.write("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
fh.write("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
fh.write("Mean AP over %d classes: %.4f\n" % (2, mAp))
fh.write("Mean F1 over %d classes: %.4f\n" % (2, mF1))
fh.close()
|