File size: 19,305 Bytes
21804d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70201ee
 
21804d2
70201ee
 
 
 
 
 
 
 
21804d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import json
from typing import Dict

from openai import AsyncOpenAI
from openai.types.beta.threads.run import Run

from openai.types.beta import Thread
from openai.types.beta.threads import (
    ImageFileContentBlock,
    TextContentBlock,
    Message,
)

import chainlit as cl
from typing import Optional
from chainlit.context import context

import assistant_tools as at
import prompts as pr
import helper_functions as hf 
import datetime
import csv

from utils import DictToObject, stream_message, ask_to_continue, process_thread_message

api_key = os.environ.get("OPENAI_API_KEY")
client = AsyncOpenAI(api_key=api_key)
assistant_id = os.environ.get("ASSISTANT_ID")


@cl.on_chat_start
async def start_chat():
    thread = await client.beta.threads.create()
    cl.user_session.set("thread", thread)
    await cl.Message(author="Climate Change Assistant", content=pr.welcome_message).send()


@cl.on_message
async def run_conversation(message_from_ui: cl.Message):
    count = 0
    thread = cl.user_session.get("thread")  # type: Thread
    # Add the message to the thread

    init_message = await client.beta.threads.messages.create(
        thread_id=thread.id, role="user", content=message_from_ui.content
    )

    # Send empty message to display the loader
    loader_msg = cl.Message(author="Climate Change Assistant", content="")
    await loader_msg.send()

    # Create the run
    run = await client.beta.threads.runs.create_and_poll(
        thread_id=thread.id, assistant_id=assistant_id
    )

    message_references = {}  # type: Dict[str, cl.Message]

    # Periodically check for updates
    #running = True
    while True:
        print('starting while True loop')
        print(run)
        run = await client.beta.threads.runs.retrieve(
            thread_id=thread.id, run_id=run.id
        )

        # Fetch the run steps
        run_steps = await client.beta.threads.runs.steps.list(
            thread_id=thread.id, run_id=run.id, order="asc"
        )

        for step in run_steps.data:
            # Fetch step details
            run_step = await client.beta.threads.runs.steps.retrieve(
                thread_id=thread.id, run_id=run.id, step_id=step.id
            )
            step_details = run_step.step_details
            # Update step content in the Chainlit UI
            if step_details.type == "message_creation":
                thread_message = await client.beta.threads.messages.retrieve(
                    message_id=step_details.message_creation.message_id,
                    thread_id=thread.id,
                )
                await process_thread_message(message_references, thread_message)

            print("line 116 about the call the tools call loop")
            count += 1
            print(str(count))

            if step_details.type == "tool_calls":
                loading_message = "Retrieving information, please stand by."
                loading_message_to_assistant = cl.Message(author="Climate Change Assistant", content=loading_message)
                await loading_message_to_assistant.send()  # output_message_to_assistant.send()

                for tool_call in step_details.tool_calls:
                    print('top of tool call loop line 119')

                    # IF tool call is a disctionary, convert to object
                    if isinstance(tool_call, dict):
                        print("here is a tool call at line 120")
                        print(tool_call)
                        tool_call = DictToObject(tool_call)
                        if tool_call.type == "function":
                            function = DictToObject(tool_call.function)
                            tool_call.function = function
                        if tool_call.type == "code_interpreter":
                            code_interpretor = DictToObject(tool_call.code_interpretor)
                            tool_call.code_interpretor = code_interpretor

                    print("here are step details at line 130")
                    print(step_details)
                    print("here is tool call at line 132")
                    print(tool_call)
                    
                    if (
                        tool_call.type == "function"
                        and len(tool_call.function.arguments) > 0
                                ):
                        function_name = tool_call.function.name
                        function_args = json.loads(tool_call.function.arguments)

                        if not tool_call.id in message_references:
                            message_references[tool_call.id] = cl.Message(
                                author=function_name,
                                content=function_args,
                                language="json",
                                #parent_id=context.session.root_message.id,
                            )
                            #await message_references[tool_call.id].send()

                            function_mappings = {
                                #"get_pf_data_handbook": at.get_pf_data_handbook,
                                "get_pf_data_timeline": at.get_pf_data_timeline,
                            }

                            # Not sure why, but sometimes this is returned rather than name
                            function_name = function_name.replace("_schema", "")

                            print(f"FUNCTION NAME: {function_name}")
                            print(function_args)

                            if function_name == "get_pf_data_timeline":

                                # Extract 'address' and 'country' values
                                address = function_args['address']
                                country = function_args['country']
                                units = function_args.get('units', 'C') #returns the specific value for 'units' else C if blank

                                print(f"Address: {address}, Country: {country}, Units: {units}")

                                parsed_output = at.get_pf_data_timeline(address, country, '1.5', units)

                                if parsed_output is not None:
                                    
                                    print(f"RUN STATUS: {run.status} from first timeline scene")
                                    print(run)
                                    
                                    
                                    # creating an initial output of what life is like today in that place
                                    output = ""

                                    loading_message_to_assistant = cl.Message(author="Climate Change Assistant", content=pr.timeline_message)
                                    await loading_message_to_assistant.send()

                                    # filtering the results to just show results describing average / baseline temperatures
                                    summary = hf.story_completion(pr.one_five_degree_prompt, units, parsed_output[parsed_output.name.str.contains("10 hottest") | parsed_output.name.str.contains("Days above 35")])

                                    next_output = await stream_message(summary, cl)

                                    output += next_output

                                    print(next_output) # hf.summarizer(output)
                                    img_content, image_bytes = hf.get_image_response_SDXL(pr.image_prompt_SDXL + address + ' ' + country) #hf.summarizer(output)
                                    #with open('feedback_logs/73ee4d67-4857-47ec-b835-5b1cfb570b20.png', 'rb') as file:
                                    #        img_content = file.read()
                                    img = cl.Image(content=image_bytes, name="image1", display="inline", size="large") # img_content
                                    print('\n Generating image, complete')
                                    image_message_to_assistant = cl.Message(author="Climate Change Assistant", content=' ', elements=[img])
                                    await image_message_to_assistant.send()

                                    #adding button to allow user to paginate the content
                                    res = await ask_to_continue()

                                    while res and res.get("value") == "question":

                                        question = await cl.AskUserMessage(content='How can I help?', timeout=600).send()
    
                                        # Use this to send the output of completion request into the next OpenAI API call.
                                        question_response = hf.summary_completion(address, country, output, question['output'])

                                        next_output = await stream_message(question_response, cl)

                                        output += next_output

                                           
                                        # Call the function again instead of duplicating the code block
                                        res = await ask_to_continue()
                                        

                                    warming_scenario = ['2.0', '3.0']
                                    
                                    #inpainting_keywords = ''

                                    for i in range(len(warming_scenario)):
                                        print(f"RUN STATUS: {run.status} from timeline scene # {i}")
                                        print(run)

                                        # going to force units to be C b/c otherwise it's breaking the logic for how the 2/3 image gets displayed
                                        parsed_output = at.get_pf_data_timeline(address, country, warming_scenario[i], 'C') #units
                                        
                                        # filterine results to talk about change from baseline 
                                        summary = hf.story_completion(pr.timeline_prompts[i], units, parsed_output[parsed_output.name.str.contains('Change') | parsed_output.name.str.contains('Likelihood')])
                                        next_output = await stream_message(summary, cl)

                                        output += next_output

                                        data_changes = parsed_output[parsed_output['name'].str.contains('Change') | parsed_output['name'].str.contains('Likelihood')].copy()
                                        #print(data_changes)
                                        inpainting_keywords = hf.generate_inpainting_keywords(data_changes) 

                                        img_content, image_bytes = hf.get_image_response_SDXL(prompt=pr.image_prompt_SDXL + address + ' ' + country, image_path = img_content, filtered_keywords=inpainting_keywords) #str(hf.summarizer(output))
                                        #with open('feedback_logs/73ee4d67-4857-47ec-b835-5b1cfb570b20.png', 'rb') as file:
                                        #   img_content = file.read()
                                        img = cl.Image(content=image_bytes, name="image1", display="inline", size="large") #img_content
                                        print('\n generating image, complete')
                                        image_message_to_assistant = cl.Message(author="Climate Change Assistant", content=' ', elements=[img])
                                        await image_message_to_assistant.send() 

                                        #adding button to allow user to paginate the content
                                        res = await ask_to_continue()

                                        while res and res.get("value") == "question":

                                            question = await cl.AskUserMessage(content='How can I help?', timeout=600).send()
        
                                            # Use this to send the output of completion request into the next OpenAI API call.
                                            question_response = hf.summary_completion(address, country, output, question['output'])

                                            next_output = await stream_message(question_response, cl)

                                            output += next_output

                                            
                                            # Call the function again instead of duplicating the code block
                                            res = await ask_to_continue()
                                            
                                        #else:
                                        #    run.status = "completed"
                                    
                                    
                                    final_message_content = hf.summary_completion(address, country, output, "Please give the user a personalized set of recommendations for how to adapt to climate change for their location and the questions they have asked (if any).")
                                    next_output = await stream_message(final_message_content, cl)
                                    output += next_output
                                    
                                    # Step 1: Ask users if they'd like to offer feedback
                                    res_want_feedback = await cl.AskActionMessage(content="Would you like to offer feedback?",
                                                                                actions=[
                                                                                    cl.Action(name="yes", value="yes", label="βœ… Yes"),
                                                                                    cl.Action(name="no", value="no", label="🚫 No")],
                                                                                timeout=600).send()

                                    # Only proceed if they want to give feedback
                                    if res_want_feedback.get("value") == "yes":
                                        # Step 2: Ask "How was your experience?"
                                        res_feedback = await cl.AskActionMessage(content="How was your experience?",
                                                                                actions=[
                                                                                    cl.Action(name="good", value="good", label="πŸ˜€ Good. I'm ready to take action"),
                                                                                    cl.Action(name="IDK", value="IDK", label="😐 Not sure"),
                                                                                    cl.Action(name="no_good", value="no_good", label="πŸ™ Not good"),], 
                                                                                timeout=600).send()

                                        if res_feedback.get("value") == "good":
                                            thank_you_message = cl.Message(author="Climate Change Assistant", content="Thanks for your feedback!")
                                            await thank_you_message.send()

                                        # Step 3: If "no good" or "not sure," ask why
                                        elif res_feedback.get("value") in ["no_good", "IDK"]:
                                            res_reason = await cl.AskUserMessage(content="Could you please tell us why?").send()

                                            # Step 4: Capture user open-ended comments and write to a CSV file // UPDATE: Literal.AI data layer handles this
                                            #filename = f"feedback_logs/feedback_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
                                            
                                            #with open(filename, "a", newline='') as csvfile:
                                            #    feedback_writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
                                            #    # Write column headers if the file is new/empty
                                            #    if csvfile.tell() == 0:
                                            #        feedback_writer.writerow(["Thread ID", "Feedback Value", "Reason Output"])
                                            #    # Assuming thread_id is available from earlier in your session
                                            #    thread = cl.user_session.get("thread")
                                            #    feedback_writer.writerow([thread.id, res_feedback.get('value'), res_reason['output'] if res_reason['output'] is not None else ''])
                                            
                                            thank_you_message = cl.Message(author="Climate Change Assistant", content="Thanks for your feedback!")
                                            await thank_you_message.send()
                                    
                                    next_steps = cl.Message(author="Climate Change Assistant", content=pr.next_steps)
                                    await next_steps.send()
                                    
                                    print('here is the bottom of the if feedback block')
                                    print(run.status)
                                    #run.status = "completed" 
                                
                                print('here is the bottom of the if pf.function is not none block')
                                print(run.status)
                                #run.status = "completed"

                                run = await client.beta.threads.runs.submit_tool_outputs_and_poll(
                                        thread_id=thread.id,
                                        run_id=run.id,
                                        tool_outputs=[
                                            {
                                                "tool_call_id": tool_call.id,
                                                "output": str(parsed_output),
                                            },
                                            ],
                                        )

                            print('here is the bottom of the IF tool call is function block')
                            #run.status = "completed"
                            print(run.status)
                            

        #await cl.sleep(1)  # Refresh every second

        if run.status == "completed":
            print(f"RUN STATUS: {run.status} from the bottom of the code")
            #running = False
            #run = await client.beta.threads.runs.cancel(
            #    thread_id=thread.id,
            #    run_id=run.id
            #    )
            print(run)
            break

        




        if run.status in ["cancelled", "failed", "completed", "expired"]:

            if run.status == "failed":
                print('here is the failed run: ', run)
            break
            print('completed')