Spaces:
No application file
No application file
File size: 7,290 Bytes
3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 e30aaa7 3653851 e30aaa7 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a faa9fb4 70aa23a d1009a4 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a 3653851 70aa23a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import asyncio
import datetime
import operator
import time
from dataclasses import dataclass
from typing import Any, Tuple, List, Optional
from functools import partial
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.messages import (
BaseMessage,
AIMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langgraph.graph import StateGraph, END
from langchain_core.callbacks import AsyncCallbackHandler
from langgraph.prebuilt import ToolNode
from utils.freeplay_helpers import FreeplayClient
from utils.zep_helpers import ZepClient
from prompts import (
casual_fan_prompt,
)
from tools import (
Document,
PlayerSearchTool,
GameSearchTool,
TeamSearchTool,
)
available_tools = [
GameSearchTool(),
PlayerSearchTool(),
TeamSearchTool(),
]
tool_node = ToolNode(available_tools)
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools=available_tools)
class AgentState(TypedDict):
email: str
first_name: str
last_name: str
zep_session_id: str
freeplay_session_id: str
persona: str
start_time: float
zep_memory: Optional[str] = None
messages: Annotated[Sequence[BaseMessage], operator.add]
async def call_model(state: AgentState,
handler: AsyncCallbackHandler,
zep_client: ZepClient,
freeplay_client: FreeplayClient) -> dict:
zep_session_id = state["zep_session_id"]
messages = state["messages"]
persona = state["persona"]
memory = state["zep_memory"]
if memory is None:
memory = await zep_client.get_memory_async(session_id=zep_session_id)
memory = memory.context or "New user/session. No memory."
# old_prompt = casual_fan_prompt.format(
# zep_context=memory,
# input=messages,
# now=datetime.datetime.now(datetime.UTC).strftime('%Y-%m-%d'),
# )
prompt = freeplay_client.get_prompt_by_persona(
persona=persona,
variables={
"now": datetime.datetime.now(datetime.UTC).strftime('%Y-%m-%d'),
"zep_context": memory,
},
history=messages,
)
# response = await llm_with_tools.ainvoke(prompt, stream=True,
# config={"callbacks" :[handler]})
response = await llm_with_tools.with_config(callbacks=[handler]).ainvoke(prompt.llm_prompt, stream=True)
return {'messages': [response], 'zep_memory': memory}
async def call_tool(state: AgentState,
handler: AsyncCallbackHandler) -> dict:
messages = state["messages"]
last_message = messages[-1]
tools_by_name = {tool.name: tool for tool in available_tools}
observations = []
for tool_call in last_message.tool_calls:
tool = tools_by_name[tool_call["name"]]
observations.append(
tool.with_config(callbacks=[handler]).ainvoke(tool_call["args"])
)
# await all observations
observations = await asyncio.gather(*observations)
results = []
for observation, tool_call in zip(observations, last_message.tool_calls):
if isinstance(observation, list) and len(observation) > 0 and isinstance(observation[0], Document):
observation = "\n\n".join(doc.page_content for doc in observation)
results.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": results}
async def should_continue(state: AgentState,
handler: AsyncCallbackHandler,
zep_client: ZepClient,
freeplay_client: FreeplayClient) -> str:
messages = state["messages"]
last_message = messages[-1]
if 'tool_calls' not in last_message.additional_kwargs:
# inform zep of final response
await zep_client.record_session(
session_id=state["zep_session_id"],
messages=messages,
)
# inform freeplay of final response
freeplay_client.record_session(state)
# trigger on_workflow_end callback
if hasattr(handler, 'on_workflow_end'):
await handler.on_workflow_end(state)
return 'end'
return 'continue'
### WorkflowBundle ###
@dataclass
class WorkflowBundle:
"""
Bundle containing the compiled workflow and its core dependencies.
Attributes:
workflow: The compiled workflow object ready for execution.
zep_client: The Zep client instance used for memory/context.
freeplay_client: The Freeplay client instance for session tracking.
"""
workflow: Any
zep_client: ZepClient
freeplay_client: FreeplayClient
def build_workflow(handler: AsyncCallbackHandler) -> WorkflowBundle:
"""
Build and compile the workflow, returning all core dependencies as a WorkflowBundle.
Args:
handler: AsyncCallbackHandler for this workflow.
Returns:
WorkflowBundle: Contains compiled workflow, zep_client, and freeplay_client.
Example usage:
bundle = build_workflow(handler)
# Access workflow: bundle.workflow
# Access zep client: bundle.zep_client
# Access freeplay client: bundle.freeplay_client
"""
workflow = StateGraph(AgentState)
zep_client = ZepClient()
freeplay_client = FreeplayClient()
workflow.add_node('agent', partial(call_model, handler=handler, zep_client=zep_client, freeplay_client=freeplay_client))
workflow.add_node('tools', partial(call_tool, handler=handler))
workflow.set_entry_point('agent')
workflow.add_conditional_edges(
'agent',
partial(should_continue, handler=handler, zep_client=zep_client, freeplay_client=freeplay_client),
{
'continue': 'tools',
'end': END,
}
)
workflow.add_edge('tools', 'agent')
return WorkflowBundle(workflow=workflow.compile(), zep_client=zep_client, freeplay_client=freeplay_client)
def build_workflow_with_state(handler: AsyncCallbackHandler,
zep_session_id: Optional[str] = None,
freeplay_session_id: Optional[str] = None,
email: Optional[str] = None,
first_name: Optional[str] = None,
last_name: Optional[str] = None,
persona: Optional[str] = None,
messages: Optional[List[BaseMessage]] = None) -> Tuple[WorkflowBundle, AgentState]:
"""
Utility to build workflow and initial state in one step.
Args:
handler: AsyncCallbackHandler for this workflow
zep_session_id: unique session identifier
messages: optional initial message list
Returns:
(workflow, state) tuple ready for execution
"""
bundle = build_workflow(handler)
state = {
"zep_session_id": zep_session_id,
"freeplay_session_id": freeplay_session_id,
"email": email,
"first_name": first_name,
"last_name": last_name,
"persona": persona,
"messages": messages or [],
"start_time": time.time(),
"zep_memory": None,
}
return bundle, state
|