File size: 3,187 Bytes
df7bba0
 
 
 
 
d512635
 
df7bba0
be35656
 
 
 
 
 
d512635
 
df7bba0
fa81799
 
f4c5c58
fa81799
 
d326433
 
 
df7bba0
be35656
 
 
 
d326433
be35656
 
f4c5c58
fa81799
be35656
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
import os

os.system("pip install transformers sentencepiece torch")

from transformers import M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer

langs = """Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), 
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), 
Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), 
Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)"""
lang_list = [lang.strip() for lang in langs.split(',')]

model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100")
tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100")

description = """This is a demo for the paper [*SMaLL-100: Introducing Shallow Multilingual Machine Translation Model for Low-Resource Languages*](https://arxiv.org/abs/2210.11621) by Alireza Mohammadshahi, Vassilina Nikoulina, Alexandre Berard, Caroline Brun, James Henderson, Laurent Besacier

In this paper, they propose a compact and shallow massively multilingual MT model, and achieve competitive result with M2M-100, while being super smaller and faster. More details are provided [here](https://huggingface.co/alirezamsh/small100)"""

def small100_tr(lang, text):

    lang = lang.split(" ")[-1][1:-1]
    
    tokenizer.tgt_lang = lang
    encoded_text = tokenizer(text, return_tensors="pt")
    generated_tokens = model.generate(**encoded_text)
    return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

examples = [["French (fr)", "Life is like a box of chocolates."]]

output_text = gr.outputs.Textbox()
gr.Interface(small100_tr, inputs=[gr.inputs.Dropdown(lang_list, label=" Target Language"), 'Source Text'], outputs=output_text, title="SMaLL100: Translate Between 100 languages much faster",
            description=description,
            examples=examples
            ).launch()