Spaces:
Sleeping
Sleeping
File size: 7,943 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import rich
import random
import pickle
import codecs as cs
import numpy as np
from torch.utils import data
from rich.progress import track
from os.path import join as pjoin
class Text2MotionDataset(data.Dataset):
def __init__(
self,
data_root,
split,
mean,
std,
max_motion_length=196,
min_motion_length=40,
unit_length=4,
fps=20,
tmpFile=True,
tiny=False,
debug=False,
**kwargs,
):
# restrian the length of motion and text
self.max_length = 20
self.max_motion_length = max_motion_length
self.min_motion_length = min_motion_length
self.unit_length = unit_length
# Data mean and std
self.mean = mean
self.std = std
# Data path
split_file = pjoin(data_root, split + '.txt')
motion_dir = pjoin(data_root, 'new_joint_vecs')
text_dir = pjoin(data_root, 'texts')
# Data id list
self.id_list = []
with cs.open(split_file, "r") as f:
for line in f.readlines():
self.id_list.append(line.strip())
# Debug mode
if tiny or debug:
enumerator = enumerate(self.id_list)
maxdata = 100
subset = '_tiny'
else:
enumerator = enumerate(
track(
self.id_list,
f"Loading HumanML3D {split}",
))
maxdata = 1e10
subset = ''
new_name_list = []
length_list = []
data_dict = {}
# Fast loading
if os.path.exists(pjoin(data_root, f'tmp/{split}{subset}_data.pkl')):
if tiny or debug:
with open(pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
'rb') as file:
data_dict = pickle.load(file)
else:
with rich.progress.open(
pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
'rb',
description=f"Loading HumanML3D {split}") as file:
data_dict = pickle.load(file)
with open(pjoin(data_root, f'tmp/{split}{subset}_index.pkl'),
'rb') as file:
name_list = pickle.load(file)
for name in new_name_list:
length_list.append(data_dict[name]['length'])
else:
for idx, name in enumerator:
if len(new_name_list) > maxdata:
break
try:
motion = np.load(pjoin(motion_dir, name + ".npy"))
if (len(motion)) < self.min_motion_length or (len(motion)
>= 200):
continue
# Read text
text_data = []
flag = False
with cs.open(pjoin(text_dir, name + '.txt')) as f:
lines = f.readlines()
for line in lines:
text_dict = {}
line_split = line.strip().split('#')
caption = line_split[0]
t_tokens = line_split[1].split(' ')
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
text_dict['caption'] = caption
text_dict['tokens'] = t_tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
motion_new = motion[int(f_tag *
fps):int(to_tag * fps)]
if (len(motion_new)
) < self.min_motion_length or (
len(motion_new) >= 200):
continue
new_name = random.choice(
'ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
while new_name in new_name_list:
new_name = random.choice(
'ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
name_count = 1
while new_name in data_dict:
new_name += '_' + name_count
name_count += 1
data_dict[new_name] = {
'motion': motion_new,
"length": len(motion_new),
'text': [text_dict]
}
new_name_list.append(new_name)
length_list.append(len(motion_new))
if flag:
data_dict[name] = {
'motion': motion,
"length": len(motion),
'text': text_data
}
new_name_list.append(name)
length_list.append(len(motion))
except:
pass
name_list, length_list = zip(
*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
if tmpFile:
os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True)
with open(pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
'wb') as file:
pickle.dump(data_dict, file)
with open(pjoin(data_root, f'tmp/{split}{subset}_index.pkl'),
'wb') as file:
pickle.dump(name_list, file)
self.length_arr = np.array(length_list)
self.data_dict = data_dict
self.name_list = name_list
self.nfeats = data_dict[name_list[0]]['motion'].shape[1]
self.reset_max_len(self.max_length)
def reset_max_len(self, length):
assert length <= self.max_motion_length
self.pointer = np.searchsorted(self.length_arr, length)
print("Pointer Pointing at %d" % self.pointer)
self.max_length = length
def __len__(self):
return len(self.name_list) - self.pointer
def __getitem__(self, item):
idx = self.pointer + item
data = self.data_dict[self.name_list[idx]]
motion, m_length, text_list = data["motion"], data["length"], data[
"text"]
# Randomly select a caption
text_data = random.choice(text_list)
caption = text_data["caption"]
all_captions = [
' '.join([token.split('/')[0] for token in text_dic['tokens']])
for text_dic in text_list
]
# Crop the motions in to times of 4, and introduce small variations
if self.unit_length < 10:
coin2 = np.random.choice(["single", "single", "double"])
else:
coin2 = "single"
if coin2 == "double":
m_length = (m_length // self.unit_length - 1) * self.unit_length
elif coin2 == "single":
m_length = (m_length // self.unit_length) * self.unit_length
idx = random.randint(0, len(motion) - m_length)
motion = motion[idx:idx + m_length]
# Z Normalization
motion = (motion - self.mean) / self.std
return caption, motion, m_length, None, None, None, None, all_captions
|