Spaces:
Sleeping
Sleeping
File size: 9,714 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# This file is taken from signjoey repository
import math
import torch
from torch import Tensor, nn
def get_activation(activation_type):
if activation_type == "relu":
return nn.ReLU()
elif activation_type == "relu6":
return nn.ReLU6()
elif activation_type == "prelu":
return nn.PReLU()
elif activation_type == "selu":
return nn.SELU()
elif activation_type == "celu":
return nn.CELU()
elif activation_type == "gelu":
return nn.GELU()
elif activation_type == "sigmoid":
return nn.Sigmoid()
elif activation_type == "softplus":
return nn.Softplus()
elif activation_type == "softshrink":
return nn.Softshrink()
elif activation_type == "softsign":
return nn.Softsign()
elif activation_type == "tanh":
return nn.Tanh()
elif activation_type == "tanhshrink":
return nn.Tanhshrink()
else:
raise ValueError("Unknown activation type {}".format(activation_type))
class MaskedNorm(nn.Module):
"""
Original Code from:
https://discuss.pytorch.org/t/batchnorm-for-different-sized-samples-in-batch/44251/8
"""
def __init__(self, norm_type, num_groups, num_features):
super().__init__()
self.norm_type = norm_type
if self.norm_type == "batch":
self.norm = nn.BatchNorm1d(num_features=num_features)
elif self.norm_type == "group":
self.norm = nn.GroupNorm(num_groups=num_groups, num_channels=num_features)
elif self.norm_type == "layer":
self.norm = nn.LayerNorm(normalized_shape=num_features)
else:
raise ValueError("Unsupported Normalization Layer")
self.num_features = num_features
def forward(self, x: Tensor, mask: Tensor):
if self.training:
reshaped = x.reshape([-1, self.num_features])
reshaped_mask = mask.reshape([-1, 1]) > 0
selected = torch.masked_select(reshaped, reshaped_mask).reshape(
[-1, self.num_features]
)
batch_normed = self.norm(selected)
scattered = reshaped.masked_scatter(reshaped_mask, batch_normed)
return scattered.reshape([x.shape[0], -1, self.num_features])
else:
reshaped = x.reshape([-1, self.num_features])
batched_normed = self.norm(reshaped)
return batched_normed.reshape([x.shape[0], -1, self.num_features])
# TODO (Cihan): Spatial and Word Embeddings are pretty much the same
# We might as well convert them into a single module class.
# Only difference is the lut vs linear layers.
class Embeddings(nn.Module):
"""
Simple embeddings class
"""
# pylint: disable=unused-argument
def __init__(
self,
embedding_dim: int = 64,
num_heads: int = 8,
scale: bool = False,
scale_factor: float = None,
norm_type: str = None,
activation_type: str = None,
vocab_size: int = 0,
padding_idx: int = 1,
freeze: bool = False,
**kwargs
):
"""
Create new embeddings for the vocabulary.
Use scaling for the Transformer.
:param embedding_dim:
:param scale:
:param vocab_size:
:param padding_idx:
:param freeze: freeze the embeddings during training
"""
super().__init__()
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.lut = nn.Embedding(vocab_size, self.embedding_dim, padding_idx=padding_idx)
self.norm_type = norm_type
if self.norm_type:
self.norm = MaskedNorm(
norm_type=norm_type, num_groups=num_heads, num_features=embedding_dim
)
self.activation_type = activation_type
if self.activation_type:
self.activation = get_activation(activation_type)
self.scale = scale
if self.scale:
if scale_factor:
self.scale_factor = scale_factor
else:
self.scale_factor = math.sqrt(self.embedding_dim)
if freeze:
freeze_params(self)
# pylint: disable=arguments-differ
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
"""
Perform lookup for input `x` in the embedding table.
:param mask: token masks
:param x: index in the vocabulary
:return: embedded representation for `x`
"""
x = self.lut(x)
if self.norm_type:
x = self.norm(x, mask)
if self.activation_type:
x = self.activation(x)
if self.scale:
return x * self.scale_factor
else:
return x
def __repr__(self):
return "%s(embedding_dim=%d, vocab_size=%d)" % (
self.__class__.__name__,
self.embedding_dim,
self.vocab_size,
)
class SpatialEmbeddings(nn.Module):
"""
Simple Linear Projection Layer
(For encoder outputs to predict glosses)
"""
# pylint: disable=unused-argument
def __init__(
self,
embedding_dim: int,
input_size: int,
num_heads: int,
freeze: bool = False,
norm_type: str = "batch",
activation_type: str = "softsign",
scale: bool = False,
scale_factor: float = None,
**kwargs
):
"""
Create new embeddings for the vocabulary.
Use scaling for the Transformer.
:param embedding_dim:
:param input_size:
:param freeze: freeze the embeddings during training
"""
super().__init__()
self.embedding_dim = embedding_dim
self.input_size = input_size
self.ln = nn.Linear(self.input_size, self.embedding_dim)
self.norm_type = norm_type
if self.norm_type:
self.norm = MaskedNorm(
norm_type=norm_type, num_groups=num_heads, num_features=embedding_dim
)
self.activation_type = activation_type
if self.activation_type:
self.activation = get_activation(activation_type)
self.scale = scale
if self.scale:
if scale_factor:
self.scale_factor = scale_factor
else:
self.scale_factor = math.sqrt(self.embedding_dim)
if freeze:
freeze_params(self)
# pylint: disable=arguments-differ
def forward(self, x: Tensor, mask: Tensor) -> Tensor:
"""
:param mask: frame masks
:param x: input frame features
:return: embedded representation for `x`
"""
x = self.ln(x)
if self.norm_type:
x = self.norm(x, mask)
if self.activation_type:
x = self.activation(x)
if self.scale:
return x * self.scale_factor
else:
return x
def __repr__(self):
return "%s(embedding_dim=%d, input_size=%d)" % (
self.__class__.__name__,
self.embedding_dim,
self.input_size,
)
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"):
super().__init__()
self.linear_1 = nn.Linear(channel, time_embed_dim)
self.act = None
if act_fn == "silu":
self.act = nn.SiLU()
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
def forward(self, sample):
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
|