File size: 16,772 Bytes
7e3e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from model.base_model import SummModel
import argparse
import os
import torch
import gzip
import json
from model.third_party.HMNet.Models.Trainers.HMNetTrainer import HMNetTrainer
from model.third_party.HMNet.Utils.Arguments import Arguments

import spacy

nlp = spacy.load("en_core_web_sm", disable=["parser"])
# tagger = nlp.get_pipe('tagger')
# ner = nlp.get_pipe('ner')
# POS = {w: i for i, w in enumerate([''] + list(tagger.labels))}
# ENT = {w: i for i, w in enumerate([''] + list(ner.move_names))}
# These two dicts are adapted from SpaCy 2.3.1, since HMNet's embedding for POS and ENT is fixed
POS = {
    "": 0,
    "$": 1,
    "''": 2,
    ",": 3,
    "-LRB-": 4,
    "-RRB-": 5,
    ".": 6,
    ":": 7,
    "ADD": 8,
    "AFX": 9,
    "CC": 10,
    "CD": 11,
    "DT": 12,
    "EX": 13,
    "FW": 14,
    "HYPH": 15,
    "IN": 16,
    "JJ": 17,
    "JJR": 18,
    "JJS": 19,
    "LS": 20,
    "MD": 21,
    "NFP": 22,
    "NN": 23,
    "NNP": 24,
    "NNPS": 25,
    "NNS": 26,
    "PDT": 27,
    "POS": 28,
    "PRP": 29,
    "PRP$": 30,
    "RB": 31,
    "RBR": 32,
    "RBS": 33,
    "RP": 34,
    "SYM": 35,
    "TO": 36,
    "UH": 37,
    "VB": 38,
    "VBD": 39,
    "VBG": 40,
    "VBN": 41,
    "VBP": 42,
    "VBZ": 43,
    "WDT": 44,
    "WP": 45,
    "WP$": 46,
    "WRB": 47,
    "XX": 48,
    "_SP": 49,
    "``": 50,
}
ENT = {
    "": 0,
    "B-ORG": 1,
    "B-DATE": 2,
    "B-PERSON": 3,
    "B-GPE": 4,
    "B-MONEY": 5,
    "B-CARDINAL": 6,
    "B-NORP": 7,
    "B-PERCENT": 8,
    "B-WORK_OF_ART": 9,
    "B-LOC": 10,
    "B-TIME": 11,
    "B-QUANTITY": 12,
    "B-FAC": 13,
    "B-EVENT": 14,
    "B-ORDINAL": 15,
    "B-PRODUCT": 16,
    "B-LAW": 17,
    "B-LANGUAGE": 18,
    "I-ORG": 19,
    "I-DATE": 20,
    "I-PERSON": 21,
    "I-GPE": 22,
    "I-MONEY": 23,
    "I-CARDINAL": 24,
    "I-NORP": 25,
    "I-PERCENT": 26,
    "I-WORK_OF_ART": 27,
    "I-LOC": 28,
    "I-TIME": 29,
    "I-QUANTITY": 30,
    "I-FAC": 31,
    "I-EVENT": 32,
    "I-ORDINAL": 33,
    "I-PRODUCT": 34,
    "I-LAW": 35,
    "I-LANGUAGE": 36,
    "L-ORG": 37,
    "L-DATE": 38,
    "L-PERSON": 39,
    "L-GPE": 40,
    "L-MONEY": 41,
    "L-CARDINAL": 42,
    "L-NORP": 43,
    "L-PERCENT": 44,
    "L-WORK_OF_ART": 45,
    "L-LOC": 46,
    "L-TIME": 47,
    "L-QUANTITY": 48,
    "L-FAC": 49,
    "L-EVENT": 50,
    "L-ORDINAL": 51,
    "L-PRODUCT": 52,
    "L-LAW": 53,
    "L-LANGUAGE": 54,
    "U-ORG": 55,
    "U-DATE": 56,
    "U-PERSON": 57,
    "U-GPE": 58,
    "U-MONEY": 59,
    "U-CARDINAL": 60,
    "U-NORP": 61,
    "U-PERCENT": 62,
    "U-WORK_OF_ART": 63,
    "U-LOC": 64,
    "U-TIME": 65,
    "U-QUANTITY": 66,
    "U-FAC": 67,
    "U-EVENT": 68,
    "U-ORDINAL": 69,
    "U-PRODUCT": 70,
    "U-LAW": 71,
    "U-LANGUAGE": 72,
    "O": 73,
}


class HMNetModel(SummModel):
    # static variables
    model_name = "HMNET"
    is_extractive = False
    is_neural = True
    is_dialogue_based = True

    def __init__(
        self,
        min_gen_length: int = 10,
        max_gen_length: int = 300,
        beam_width: int = 6,
        **kwargs,
    ):
        """
        Create a summarization model with HMNet backbone. In the default setting, the inference speed will be
        10s/sample (on one GPU), however, if one can tune these three parameters properly, e.g. min_gen_length=10,
        max_gen_length=100, and beam_width=2, the inference speed will increase to 2s/sample (on one GPU).

        Args:
          min_gen_length (int): minimum generation length of the decoder
          max_gen_length (int): maximum generation length of the decoder
          beam_width (int): width of the beam when doing beam search in the decoding process
          kwargs: the other valid parameters. The valid parameters can be found in
              model/dialogue/hmnet/config/dialogue.conf . You can use either lower case or upper case for parameter
              name. The valid parameter name is one of the following args, however, we do not encourage you to modify
               them, since some unexpected, untested errors might be triggered:
              ['MODEL', 'TASK', 'CRITERION', 'SEED', 'MAX_NUM_EPOCHS', 'EVAL_PER_UPDATE_NUM'
              , 'UPDATES_PER_EPOCH', 'OPTIMIZER', 'START_LEARNING_RATE', 'LR_SCHEDULER', 'WARMUP_STEPS',
              'WARMUP_INIT_LR', 'WARMUP_END_LR', 'GRADIENT_ACCUMULATE_STEP', 'GRAD_CLIPPING', 'USE_REL_DATA_PATH',
              'TRAIN_FILE', 'DEV_FILE', 'TEST_FILE', 'ROLE_DICT_FILE', 'MINI_BATCH', 'MAX_PADDING_RATIO',
              'BATCH_READ_AHEAD', 'DOC_SHUFFLE_BUF_SIZE', 'SAMPLE_SHUFFLE_BUFFER_SIZE', 'BATCH_SHUFFLE_BUFFER_SIZE',
              'MAX_TRANSCRIPT_WORD', 'MAX_SENT_LEN', 'MAX_SENT_NUM', 'DROPOUT', 'VOCAB_DIM', 'ROLE_SIZE', 'ROLE_DIM',
              'POS_DIM', 'ENT_DIM', 'USE_ROLE', 'USE_POSENT', 'USE_BOS_TOKEN', 'USE_EOS_TOKEN',
              'TRANSFORMER_EMBED_DROPOUT', 'TRANSFORMER_RESIDUAL_DROPOUT', 'TRANSFORMER_ATTENTION_DROPOUT',
              'TRANSFORMER_LAYER', 'TRANSFORMER_HEAD', 'TRANSFORMER_POS_DISCOUNT', 'PRE_TOKENIZER',
              'PRE_TOKENIZER_PATH', 'PYLEARN_MODEL', 'EXTRA_IDS', 'BEAM_WIDTH', 'EVAL_TOKENIZED', 'EVAL_LOWERCASE',
              'MAX_GEN_LENGTH', 'MIN_GEN_LENGTH', 'NO_REPEAT_NGRAM_SIZE']

        Return an instance of HMNet model for dialogue summarization.
        """
        super(HMNetModel, self).__init__()
        self.root_path = self._get_root()

        # we leave the most influential params with prompt and the others as hidden kwargs
        kwargs["MIN_GEN_LENGTH"] = min_gen_length
        kwargs["MAX_GEN_LENGTH"] = max_gen_length
        kwargs["BEAM_WIDTH"] = beam_width
        self.opt = self._parse_args(kwargs)
        self.model = HMNetTrainer(self.opt)

    def _get_root(self):
        root_path = os.getcwd()
        while "model" not in os.listdir(root_path):
            root_path = os.path.dirname(root_path)
        root_path = os.path.join(root_path, "model/dialogue")
        return root_path

    def _parse_args(self, kwargs):
        parser = argparse.ArgumentParser(
            description="HMNet: Pretrain or fine-tune models for HMNet model."
        )
        parser.add_argument(
            "--command", default="evaluate", help="Command: train/evaluate"
        )
        parser.add_argument(
            "--conf_file",
            default=os.path.join(self.root_path, "hmnet/config/dialogue.conf"),
            help="Path to the BigLearn conf file.",
        )
        parser.add_argument(
            "--PYLEARN_MODEL", help="Overrides this option from the conf file."
        )
        parser.add_argument(
            "--master_port", help="Overrides this option default", default=None
        )
        parser.add_argument("--cluster", help="local, philly or aml", default="local")
        parser.add_argument(
            "--dist_init_path", help="Distributed init path for AML", default="./tmp"
        )
        parser.add_argument(
            "--fp16",
            action="store_true",
            help="Whether to use 16-bit float precision instead of 32-bit",
        )
        parser.add_argument(
            "--fp16_opt_level",
            type=str,
            default="O1",
            help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
            "See details at https://nvidia.github.io/apex/amp.html",
        )
        parser.add_argument("--no_cuda", action="store_true", help="Disable cuda.")
        parser.add_argument(
            "--config_overrides",
            help="Override parameters on config, VAR=val;VAR=val;...",
        )

        cmdline_args = parser.parse_args()
        command = cmdline_args.command
        conf_file = cmdline_args.conf_file
        conf_args = Arguments(conf_file)
        opt = conf_args.readArguments()

        if cmdline_args.config_overrides:
            for config_override in cmdline_args.config_overrides.split(";"):
                config_override = config_override.strip()
                if config_override:
                    var_val = config_override.split("=")
                    assert (
                        len(var_val) == 2
                    ), f"Config override '{var_val}' does not have the form 'VAR=val'"
                    conf_args.add_opt(opt, var_val[0], var_val[1], force_override=True)

        opt["cuda"] = torch.cuda.is_available() and not cmdline_args.no_cuda
        opt["confFile"] = conf_file
        if "datadir" not in opt:
            opt["datadir"] = os.path.dirname(
                conf_file
            )  # conf_file specifies where the data folder is
        opt["basename"] = os.path.basename(
            conf_file
        )  # conf_file specifies where the name of save folder is
        opt["command"] = command

        # combine cmdline_args into opt dictionary
        for key, val in cmdline_args.__dict__.items():
            # if val is not None and key not in ['command', 'conf_file']:
            if val is not None:
                opt[key] = val

        # combine kwargs into opt dictionary (we allow lower case)
        for key, val in kwargs.items():
            valid_keys = [x for x in opt.keys() if x.upper() == x]
            if key.upper() not in valid_keys:
                print("WARNING: {} is not a valid key in HMNet.".format(key))
                print("The valid keys are:", valid_keys)
                continue
            if val is not None:
                opt[key.upper()] = val

        return opt

    def summarize(self, corpus, queries=None):
        print(f"HMNet model: processing document of {corpus.__len__()} samples")
        # transform the original dataset to "dialogue" input
        # we only use test set path for evaluation
        data_folder = os.path.join(
            os.path.dirname(self.opt["datadir"]),
            "ExampleRawData/meeting_summarization/AMI_proprec/test",
        )

        self._create_datafolder(data_folder)
        self._preprocess(corpus, data_folder)

        # return self.model.eval()
        results = self._evaluate()

        return results

    def _evaluate(self):
        if self.opt["rank"] == 0:
            self.model.log("-----------------------------------------------")
            self.model.log("Evaluating model ... ")

        self.model.set_up_model()

        eval_dataset = "test"
        batch_generator_eval = self.model.get_batch_generator(eval_dataset)
        predictions = self._eval_batches(
            self.model.module, batch_generator_eval, self.model.saveFolder, eval_dataset
        )

        return predictions

    def _eval_batches(self, module, dev_batches, save_folder, label=""):
        max_sent_len = int(self.opt["MAX_GEN_LENGTH"])

        print("Decoding current model ... \nSaving folder is {}".format(save_folder))
        print("Each sample will cost about 10 second.")
        import time

        start_time = time.time()
        predictions = []  # prediction of tokens from model
        if not isinstance(module.tokenizer, list):
            decoder_tokenizer = module.tokenizer
        elif len(module.tokenizer) == 1:
            decoder_tokenizer = module.tokenizer[0]
        elif len(module.tokenizer) == 2:
            decoder_tokenizer = module.tokenizer[1]
        else:
            assert False, "len(module.tokenizer) > 2"

        with torch.no_grad():
            for j, dev_batch in enumerate(dev_batches):
                for b in dev_batch:
                    if torch.is_tensor(dev_batch[b]):
                        dev_batch[b] = dev_batch[b].to(self.opt["device"])

                beam_search_res = module(
                    dev_batch, beam_search=True, max_sent_len=max_sent_len
                )
                pred = [
                    [t[0] for t in x] if len(x) > 0 else [[]] for x in beam_search_res
                ]
                predictions.extend(
                    [
                        [
                            self._convert_tokens_to_string(decoder_tokenizer, tt)
                            for tt in t
                        ]
                        for t in pred
                    ]
                )

                if (
                    "DEBUG" in self.opt and j >= 10
                ) or j >= self.model.task.evaluator.eval_batches_num:
                    # in debug mode (decode first 10 batches) ortherwise decode first self.eval_batches_num bathes
                    break

        top1_predictions = [x[0] for x in predictions]

        print("Total time for inference:", time.time() - start_time)
        return top1_predictions

    def _convert_tokens_to_string(self, tokenizer, tokens):
        if "EVAL_TOKENIZED" in self.opt:
            tokens = [t for t in tokens if t not in tokenizer.all_special_tokens]
        if "EVAL_LOWERCASE" in self.opt:
            tokens = [t.lower() for t in tokens]
        if "EVAL_TOKENIZED" in self.opt:
            return " ".join(tokens)
        else:
            return tokenizer.decode(
                tokenizer.convert_tokens_to_ids(tokens), skip_special_tokens=True
            )

    def _preprocess(self, corpus, test_path):
        samples = []
        for i, sample in enumerate(corpus):
            new_sample = {"id": i, "meeting": [], "summary": []}
            if isinstance(sample, str):
                raise RuntimeError(
                    "Error: the input of HMNet should be dialogues, rather than documents."
                )

            # add all the turns one by one
            for turn in sample:
                turn = [x.strip() for x in turn.split(":")]
                if len(turn) < 2:
                    continue
                tokenized_turn = nlp(turn[1])
                # In case we can't find proper entity in move_names
                ent_id = []
                pos_id = []
                for token in tokenized_turn:
                    ent = (
                        token.ent_iob_ + "-" + token.ent_type_
                        if token.ent_iob_ != "O"
                        else "O"
                    )
                    ent_id.append(ENT[ent] if ent in ENT else ENT[""])

                    pos = token.tag_
                    pos_id.append(POS[pos] if pos in POS else POS[""])

                new_sample["meeting"].append(
                    {
                        "speaker": turn[0],
                        "role": "",
                        "utt": {
                            "word": [str(token) for token in tokenized_turn],
                            "pos_id": pos_id,
                            "ent_id": ent_id,
                        },
                    }
                )
            new_sample["summary"].append(
                "This is a dummy summary. HMNet will filter out the sample w/o summary!"
            )
            samples.append(new_sample)
            # save to the gzip
            file_path = os.path.join(test_path, "split_{}.jsonl.gz".format(i))
            with gzip.open(file_path, "wt", encoding="utf-8") as file:
                file.write(json.dumps(new_sample))

    def _clean_datafolder(self, data_folder):
        for name in os.listdir(data_folder):
            name = os.path.join(data_folder, name)
            if ".gz" in name:
                os.remove(name)

    def _create_datafolder(self, data_folder):
        if os.path.exists(data_folder):
            self._clean_datafolder(data_folder)
        else:
            os.makedirs(data_folder)
        with open(
            os.path.join(os.path.dirname(data_folder), "test_ami.json"),
            "w",
            encoding="utf-8",
        ) as file:
            json.dump(
                [
                    {
                        "source": {
                            "dataset": "../ExampleRawData/meeting_summarization/AMI_proprec/test/"
                        },
                        "task": "meeting",
                        "name": "ami",
                    }
                ],
                file,
            )

        with open(
            os.path.join(
                os.path.dirname(os.path.dirname(data_folder)), "role_dict_ext.json"
            ),
            "w",
        ) as file:
            json.dump({}, file)

    @classmethod
    def show_capability(cls) -> None:
        basic_description = cls.generate_basic_description()
        more_details = (
            "A HMNet model finetuned on CNN-DM dataset for summarization.\n\n"
            "Strengths:\n - High performance on dialogue summarization task.\n\n"
            "Weaknesses:\n - Not suitable for datasets other than dialogues.\n\n"
            "Initialization arguments:\n "
            " - `corpus`: Unlabelled corpus of documents.\n"
        )
        print(f"{basic_description} \n {'#' * 20} \n {more_details}")