File size: 9,862 Bytes
62d106f
 
 
 
 
0ce740f
62d106f
 
 
 
 
 
 
 
0ce740f
62d106f
0ce740f
 
 
 
 
 
 
 
 
 
62d106f
0ce740f
 
 
 
 
 
 
 
62d106f
0ce740f
 
 
 
 
62d106f
0ce740f
 
62d106f
 
0ce740f
62d106f
 
0ce740f
62d106f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d106f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce740f
 
62d106f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce740f
 
62d106f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import code
import datetime
import json
import os
import oss2
from pytz import timezone
import time

import pandas as pd  # pandas>=2.0.3
import plotly.express as px
import plotly.graph_objects as go
from tqdm import tqdm


NUM_SERVERS = 1
LOG_ROOT_DIR = os.getenv("LOG_ROOT_DIR", "")
OSS_ACCESS_KEY_ID = os.getenv("OSS_ACCESS_KEY_ID", "")
OSS_ACCESS_KEY_SECRET = os.getenv("OSS_ACCESS_KEY_SECRET", "")
OSS_ENDPOINT = os.getenv("OSS_ENDPOINT", "")
OSS_BUCKET_NAME = os.getenv("OSS_BUCKET_NAME", "")
OSS_FILE_PREFIX = "logs/vote_log/"

auth = oss2.Auth(OSS_ACCESS_KEY_ID, OSS_ACCESS_KEY_SECRET)
bucket = oss2.Bucket(auth, OSS_ENDPOINT, OSS_BUCKET_NAME)


def get_log_files(bucket, max_num_files=None):
    """
    Fetch log file paths from OSS, sorted by last modified timestamp.
    :param bucket: oss2.Bucket instance
    :param max_num_files: Maximum number of files to return
    :return: List of log file paths (sorted by timestamp)
    """
    # List objects in the OSS bucket with the specified prefix
    filenames = []
    for obj in oss2.ObjectIterator(bucket, prefix=OSS_FILE_PREFIX):
        if obj.key.endswith("-conv.json"):  # Filter log files by extension
            filenames.append((obj.key, obj.last_modified))

    # Sort filenames by the last modified timestamp
    filenames = sorted(filenames, key=lambda x: x[1])

    # Extract only the file paths (keys)
    filenames = [x[0] for x in filenames]

    # Apply the max_num_files limit if specified
    max_num_files = max_num_files or len(filenames)
    filenames = filenames[-max_num_files:]

    return filenames


def load_log_files(filename):
    data = []
    for retry in range(5):
        try:
            lines = open(filename).readlines()
            break
        except FileNotFoundError:
            time.sleep(2)

    for l in lines:
        row = json.loads(l)
        data.append(
            dict(
                type=row["type"],
                tstamp=row["tstamp"],
                model=row.get("model", ""),
                models=row.get("models", ["", ""]),
            )
        )
    return data


def load_log_files_parallel(log_files, num_threads=16):
    data_all = []
    from multiprocessing import Pool

    with Pool(num_threads) as p:
        ret_all = list(tqdm(p.imap(load_log_files, log_files), total=len(log_files)))
        for ret in ret_all:
            data_all.extend(ret)
    return data_all


def load_log_files_from_oss(bucket, filename):
    """
    Load log data from a file stored in OSS.
    :param bucket: oss2.Bucket instance
    :param filename: Path to the file in OSS
    :return: Parsed log data as a list of dictionaries
    """
    data = []
    for retry in range(5):
        try:
            # Read the file from OSS
            result = bucket.get_object(filename)
            lines = result.read().decode('utf-8').splitlines()  # Read file content and split into lines
            break
        except oss2.exceptions.NoSuchKey:
            print(f"File not found in OSS: {filename}, retrying ({retry + 1}/5)...")
            time.sleep(2)
        except Exception as e:
            print(f"Error reading file {filename} from OSS: {e}")
            time.sleep(2)

    for line in lines:
        row = json.loads(line)
        data.append(
            dict(
                type=row["type"],
                tstamp=row["tstamp"],
                model=row.get("model", ""),
                models=row.get("models", ["", ""]),
            )
        )
    return data


def load_log_files_parallel_from_oss(bucket, log_files, num_threads=16):
    """
    Load log files from OSS in parallel using multiple threads.
    :param bucket: oss2.Bucket instance
    :param log_files: List of log file paths in OSS
    :param num_threads: Number of threads to use for parallel loading
    :return: Combined log data from all files
    """
    data_all = []
    from multiprocessing import Pool
    from functools import partial

    # Partial function to include the bucket in the function arguments
    load_function = partial(load_log_files_from_oss, bucket)

    # Parallel processing using multiple threads
    with Pool(num_threads) as p:
        ret_all = list(tqdm(p.imap(load_function, log_files), total=len(log_files)))
        for ret in ret_all:
            data_all.extend(ret)
    return data_all


def get_anony_vote_df(df):
    anony_vote_df = df[
        df["type"].isin(["leftvote", "rightvote", "tievote", "bothbad_vote"])
    ]
    anony_vote_df = anony_vote_df[anony_vote_df["models"].apply(lambda x: x[0] == "")]
    return anony_vote_df


def merge_counts(series, on, names):
    ret = pd.merge(series[0], series[1], on=on)
    for i in range(2, len(series)):
        ret = pd.merge(ret, series[i], on=on)
    ret = ret.reset_index()
    old_names = list(ret.columns)[-len(series) :]
    rename = {old_name: new_name for old_name, new_name in zip(old_names, names)}
    ret = ret.rename(columns=rename)
    return ret


def report_basic_stats(bucket, log_files):
    df_all = load_log_files_parallel_from_oss(bucket, log_files)
    df_all = pd.DataFrame(df_all)
    now_t = df_all["tstamp"].max()
    df_1_hour = df_all[df_all["tstamp"] > (now_t - 3600)]
    df_1_day = df_all[df_all["tstamp"] > (now_t - 3600 * 24)]
    anony_vote_df_all = get_anony_vote_df(df_all)

    # Chat trends
    chat_dates = [
        datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
            "%Y-%m-%d"
        )
        for x in df_all[df_all["type"] == "chat"]["tstamp"]
    ]
    chat_dates_counts = pd.value_counts(chat_dates)
    vote_dates = [
        datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
            "%Y-%m-%d"
        )
        for x in anony_vote_df_all["tstamp"]
    ]
    vote_dates_counts = pd.value_counts(vote_dates)
    chat_dates_bar = go.Figure(
        data=[
            go.Bar(
                name="Anony. Vote",
                x=vote_dates_counts.index,
                y=vote_dates_counts,
                text=[f"{val:.0f}" for val in vote_dates_counts],
                textposition="auto",
            ),
            go.Bar(
                name="Chat",
                x=chat_dates_counts.index,
                y=chat_dates_counts,
                text=[f"{val:.0f}" for val in chat_dates_counts],
                textposition="auto",
            ),
        ]
    )
    chat_dates_bar.update_layout(
        barmode="stack",
        xaxis_title="Dates",
        yaxis_title="Count",
        height=300,
        width=1200,
    )

    # Model call counts
    model_hist_all = df_all[df_all["type"] == "chat"]["model"].value_counts()
    model_hist_1_day = df_1_day[df_1_day["type"] == "chat"]["model"].value_counts()
    model_hist_1_hour = df_1_hour[df_1_hour["type"] == "chat"]["model"].value_counts()
    model_hist = merge_counts(
        [model_hist_all, model_hist_1_day, model_hist_1_hour],
        on="model",
        names=["All", "Last Day", "Last Hour"],
    )
    model_hist_md = model_hist.to_markdown(index=False, tablefmt="github")

    # Action counts
    action_hist_all = df_all["type"].value_counts()
    action_hist_1_day = df_1_day["type"].value_counts()
    action_hist_1_hour = df_1_hour["type"].value_counts()
    action_hist = merge_counts(
        [action_hist_all, action_hist_1_day, action_hist_1_hour],
        on="type",
        names=["All", "Last Day", "Last Hour"],
    )
    action_hist_md = action_hist.to_markdown(index=False, tablefmt="github")

    # Anony vote counts
    anony_vote_hist_all = anony_vote_df_all["type"].value_counts()
    anony_vote_df_1_day = get_anony_vote_df(df_1_day)
    anony_vote_hist_1_day = anony_vote_df_1_day["type"].value_counts()
    # anony_vote_df_1_hour = get_anony_vote_df(df_1_hour)
    # anony_vote_hist_1_hour = anony_vote_df_1_hour["type"].value_counts()
    anony_vote_hist = merge_counts(
        [anony_vote_hist_all, anony_vote_hist_1_day],
        on="type",
        names=["All", "Last Day"],
    )
    anony_vote_hist_md = anony_vote_hist.to_markdown(index=False, tablefmt="github")

    # Last 24 hours
    chat_1_day = df_1_day[df_1_day["type"] == "chat"]
    num_chats_last_24_hours = []
    base = df_1_day["tstamp"].min()
    for i in range(24, 0, -1):
        left = base + (i - 1) * 3600
        right = base + i * 3600
        num = ((chat_1_day["tstamp"] >= left) & (chat_1_day["tstamp"] < right)).sum()
        num_chats_last_24_hours.append(num)
    times = [
        datetime.datetime.fromtimestamp(
            base + i * 3600, tz=timezone("US/Pacific")
        ).strftime("%Y-%m-%d %H:%M:%S %Z")
        for i in range(24, 0, -1)
    ]
    last_24_hours_df = pd.DataFrame({"time": times, "value": num_chats_last_24_hours})
    last_24_hours_md = last_24_hours_df.to_markdown(index=False, tablefmt="github")

    # Last update datetime
    last_updated_tstamp = now_t
    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    # code.interact(local=locals())

    return {
        "chat_dates_bar": chat_dates_bar,
        "model_hist_md": model_hist_md,
        "action_hist_md": action_hist_md,
        "anony_vote_hist_md": anony_vote_hist_md,
        "num_chats_last_24_hours": last_24_hours_md,
        "last_updated_datetime": last_updated_datetime,
    }


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--max-num-files", type=int)
    args = parser.parse_args()

    log_files = get_log_files(bucket, args.max_num_files)
    basic_stats = report_basic_stats(bucket, log_files)

    print(basic_stats["action_hist_md"] + "\n")
    print(basic_stats["model_hist_md"] + "\n")
    print(basic_stats["anony_vote_hist_md"] + "\n")
    print(basic_stats["num_chats_last_24_hours"] + "\n")