File size: 7,621 Bytes
e6b8f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4f4cb
e6b8f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c1e309
5e4f4cb
6c1e309
e758fa3
 
6c1e309
 
 
 
e6b8f5d
 
 
 
 
 
 
 
 
 
695ee49
e6b8f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0209209
80774a6
e6b8f5d
 
 
217efc9
ef21ffa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
os.system("pip install gradio==2.8.0b5")
os.system("pip install -r requirements.txt")
os.system("pip freeze")

from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *


#from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download

device= 'cpu'
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)

@ torch.no_grad()
def projection(img, name, device='cuda'):
 
    
    transform = transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )
    img = transform(img).unsqueeze(0).to(device)
    images, w_plus = net(img, randomize_noise=False, return_latents=True)
    result_file = {}
    result_file['latent'] = w_plus[0]
    torch.save(result_file, name)
    return w_plus[0]




device = 'cpu' 


latent_dim = 512

model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)

generatorjojo = deepcopy(original_generator)

generatordisney = deepcopy(original_generator)

generatorjinx = deepcopy(original_generator)

generatorcaitlyn = deepcopy(original_generator)

generatoryasuho = deepcopy(original_generator)

generatorarcanemulti = deepcopy(original_generator)

generatorart = deepcopy(original_generator)

generatorspider = deepcopy(original_generator)

generatorsketch = deepcopy(original_generator)

generatordisneynoc = deepcopy(original_generator)

transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)




modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")


ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)


modeldisney = hf_hub_download(repo_id="akhaliq/jojogan-disney", filename="disney_preserve_color.pt")

ckptdisney = torch.load(modeldisney, map_location=lambda storage, loc: storage)
generatordisney.load_state_dict(ckptdisney["g"], strict=False)


modeljinx = hf_hub_download(repo_id="akhaliq/jojo-gan-jinx", filename="arcane_jinx_preserve_color.pt")

ckptjinx = torch.load(modeljinx, map_location=lambda storage, loc: storage)
generatorjinx.load_state_dict(ckptjinx["g"], strict=False)


modelcaitlyn = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_caitlyn_preserve_color.pt")

ckptcaitlyn = torch.load(modelcaitlyn, map_location=lambda storage, loc: storage)
generatorcaitlyn.load_state_dict(ckptcaitlyn["g"], strict=False)


modelyasuho = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_yasuho_preserve_color.pt")

ckptyasuho = torch.load(modelyasuho, map_location=lambda storage, loc: storage)
generatoryasuho.load_state_dict(ckptyasuho["g"], strict=False)


model_arcane_multi = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_multi_preserve_color.pt")

ckptarcanemulti = torch.load(model_arcane_multi, map_location=lambda storage, loc: storage)
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)


modelart = hf_hub_download(repo_id="akhaliq/jojo-gan-art", filename="art.pt")

ckptart = torch.load(modelart, map_location=lambda storage, loc: storage)
generatorart.load_state_dict(ckptart["g"], strict=False)


modelSpiderverse = hf_hub_download(repo_id="akhaliq/jojo-gan-spiderverse", filename="Spiderverse-face-500iters-8face.pt")

ckptspider = torch.load(modelSpiderverse, map_location=lambda storage, loc: storage)
generatorspider.load_state_dict(ckptspider["g"], strict=False)

modelSketch = hf_hub_download(repo_id="akhaliq/jojogan-sketch", filename="sketch_multi.pt")

ckptsketch = torch.load(modelSketch, map_location=lambda storage, loc: storage)
generatorsketch.load_state_dict(ckptsketch["g"], strict=False)


modeldisneynoc = hf_hub_download(repo_id="algomuffin/disney", filename="disney.pt")

ckptMy = torch.load(modeldisneynoc, map_location=lambda storage, loc: storage)
generatordisneynoc.load_state_dict(ckptMy["g"], strict=False)




def inference(img, model):  
    img.save('out.jpg')  
    aligned_face = align_face('out.jpg')
        
    my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
    if model == 'JoJo':
        with torch.no_grad():
            my_sample = generatorjojo(my_w, input_is_latent=True)  
    elif model == 'Disney':
        with torch.no_grad():
            my_sample = generatordisneynoc(my_w, input_is_latent=True)
    elif model == 'Jinx':
        with torch.no_grad():
            my_sample = generatorjinx(my_w, input_is_latent=True)
    elif model == 'Caitlyn':
        with torch.no_grad():
            my_sample = generatorcaitlyn(my_w, input_is_latent=True)
    elif model == 'Yasuho':
        with torch.no_grad():
            my_sample = generatoryasuho(my_w, input_is_latent=True)
    elif model == 'Arcane Multi':
        with torch.no_grad():
            my_sample = generatorarcanemulti(my_w, input_is_latent=True)
    elif model == 'Art':
        with torch.no_grad():
            my_sample = generatorart(my_w, input_is_latent=True)
    elif model == 'Spider-Verse':
        with torch.no_grad():
            my_sample = generatorspider(my_w, input_is_latent=True)
    else:
        with torch.no_grad():
            my_sample = generatorsketch(my_w, input_is_latent=True)
            
    
    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "JoJoGAN_fork"
description = "Gradio Demo for JoJoGAN: This is a fork made by algomuffin in order to test the network with specific parameters. To use it, simply upload your image, or click one of the examples to load them."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"

examples=[['mona.png','Disney']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Disney'], type="value", default='Disney', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch(enable_queue=True, cache_examples=True)