Spaces:
Runtime error
Runtime error
File size: 7,717 Bytes
e6b8f5d 5e4f4cb e6b8f5d 6c1e309 5e4f4cb 6c1e309 e758fa3 6c1e309 e6b8f5d 695ee49 e6b8f5d 0209209 996c915 e6b8f5d 9dc232d ef21ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
os.system("pip install gradio==2.8.0b5")
os.system("pip install -r requirements.txt")
os.system("pip freeze")
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
#from e4e_projection import projection as e4e_projection
from copy import deepcopy
import imageio
import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
device= 'cpu'
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)
@ torch.no_grad()
def projection(img, name, device='cuda'):
transform = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img).unsqueeze(0).to(device)
images, w_plus = net(img, randomize_noise=False, return_latents=True)
result_file = {}
result_file['latent'] = w_plus[0]
torch.save(result_file, name)
return w_plus[0]
device = 'cpu'
latent_dim = 512
model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)
generatorjojo = deepcopy(original_generator)
generatordisney = deepcopy(original_generator)
generatorjinx = deepcopy(original_generator)
generatorcaitlyn = deepcopy(original_generator)
generatoryasuho = deepcopy(original_generator)
generatorarcanemulti = deepcopy(original_generator)
generatorart = deepcopy(original_generator)
generatorspider = deepcopy(original_generator)
generatorsketch = deepcopy(original_generator)
generatordisneynoc = deepcopy(original_generator)
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")
ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)
modeldisney = hf_hub_download(repo_id="akhaliq/jojogan-disney", filename="disney_preserve_color.pt")
ckptdisney = torch.load(modeldisney, map_location=lambda storage, loc: storage)
generatordisney.load_state_dict(ckptdisney["g"], strict=False)
modeljinx = hf_hub_download(repo_id="akhaliq/jojo-gan-jinx", filename="arcane_jinx_preserve_color.pt")
ckptjinx = torch.load(modeljinx, map_location=lambda storage, loc: storage)
generatorjinx.load_state_dict(ckptjinx["g"], strict=False)
modelcaitlyn = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_caitlyn_preserve_color.pt")
ckptcaitlyn = torch.load(modelcaitlyn, map_location=lambda storage, loc: storage)
generatorcaitlyn.load_state_dict(ckptcaitlyn["g"], strict=False)
modelyasuho = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_yasuho_preserve_color.pt")
ckptyasuho = torch.load(modelyasuho, map_location=lambda storage, loc: storage)
generatoryasuho.load_state_dict(ckptyasuho["g"], strict=False)
model_arcane_multi = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_multi_preserve_color.pt")
ckptarcanemulti = torch.load(model_arcane_multi, map_location=lambda storage, loc: storage)
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)
modelart = hf_hub_download(repo_id="akhaliq/jojo-gan-art", filename="art.pt")
ckptart = torch.load(modelart, map_location=lambda storage, loc: storage)
generatorart.load_state_dict(ckptart["g"], strict=False)
modelSpiderverse = hf_hub_download(repo_id="akhaliq/jojo-gan-spiderverse", filename="Spiderverse-face-500iters-8face.pt")
ckptspider = torch.load(modelSpiderverse, map_location=lambda storage, loc: storage)
generatorspider.load_state_dict(ckptspider["g"], strict=False)
modelSketch = hf_hub_download(repo_id="akhaliq/jojogan-sketch", filename="sketch_multi.pt")
ckptsketch = torch.load(modelSketch, map_location=lambda storage, loc: storage)
generatorsketch.load_state_dict(ckptsketch["g"], strict=False)
modeldisneynoc = hf_hub_download(repo_id="algomuffin/disney", filename="disney.pt")
ckptMy = torch.load(modeldisneynoc, map_location=lambda storage, loc: storage)
generatordisneynoc.load_state_dict(ckptMy["g"], strict=False)
def inference(img, model):
img.save('out.jpg')
aligned_face = align_face('out.jpg')
my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
if model == 'JoJo':
with torch.no_grad():
my_sample = generatorjojo(my_w, input_is_latent=True)
elif model == 'Disney':
with torch.no_grad():
my_sample = generatordisneynoc(my_w, input_is_latent=True)
elif model == 'Jinx':
with torch.no_grad():
my_sample = generatorjinx(my_w, input_is_latent=True)
elif model == 'Caitlyn':
with torch.no_grad():
my_sample = generatorcaitlyn(my_w, input_is_latent=True)
elif model == 'Yasuho':
with torch.no_grad():
my_sample = generatoryasuho(my_w, input_is_latent=True)
elif model == 'Arcane Multi':
with torch.no_grad():
my_sample = generatorarcanemulti(my_w, input_is_latent=True)
elif model == 'Art':
with torch.no_grad():
my_sample = generatorart(my_w, input_is_latent=True)
elif model == 'Spider-Verse':
with torch.no_grad():
my_sample = generatorspider(my_w, input_is_latent=True)
else:
with torch.no_grad():
my_sample = generatorsketch(my_w, input_is_latent=True)
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
title = "JoJoGAN_fork"
description = "Gradio Demo for JoJoGAN: This is a fork made by Alessandro Miragliotta in order to test the network with the Disney no-preserve color model. To use it, simply upload your image, or click one of the examples to load them."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"
examples=[['mona.png','Disney'],['man.jpg','Disney'],['iu.jpeg','Disney'],['baby-face.jpg','Disney']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Disney'], type="value", default='Disney', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch(enable_queue=True, cache_examples=True)
|