File size: 5,099 Bytes
abc65fe b19740e abc65fe 55ffee0 377528c abc65fe 55ffee0 abc65fe f19948a abc65fe 50cb5f9 26f08ee abc65fe 55ffee0 abc65fe 590e6c9 7572cf2 4fffa9e e2f46ea 44c960c be71825 e2f46ea abc65fe 26f08ee abc65fe b86cb8e abc65fe b86cb8e 8aefcce abc65fe b86cb8e abc65fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
import gradio as gr
import os
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">LLM-jp v2</h1>
<p>LLM-jp v2 ใฎ้ๅ
ฌๅผใใขใ ใใ <a href="https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0"><b>llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0</b></a>.</p>
</div>
'''
LICENSE = """
<p/>
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLM-jp v2</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ใชใใงใใใใฆใญ</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0", device_map="auto", torch_dtype=torch.bfloat16)
@spaces.GPU
def chat_llm_jp_v2(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
conversation.append({"role": "system", "content": "ไปฅไธใฏใใฟในใฏใ่ชฌๆใใๆ็คบใงใใ่ฆๆฑใ้ฉๅใซๆบใใๅฟ็ญใๆธใใชใใใ"})
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llm_jp_v2,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="โ๏ธ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0.0,
maximum=1,
step=0.1,
value=0.7,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['ๅฐๅญฆ็ใซใใใใใใใซ็ธๅฏพๆง็่ซใๆใใฆใใ ใใใ'],
['ๅฎๅฎใฎ่ตทๆบใ็ฅใใใใฎๆนๆณใในใใใใปใใคใปในใใใใงๆใใฆใใ ใใใ'],
['1ใใ100ใพใงใฎ็ด ๆฐใๆฑใใในใฏใชใใใPythonใงๆธใใฆใใ ใใใ'],
['ๅ้ใฎ้ฝ่ตใซใใใ่ช็ๆฅใใฌใผใณใใ่ใใฆใใ ใใใใใ ใใ้ฝ่ตใฏไธญๅญฆ็ใงใ็งใฏๅใใฏใฉในใฎ็ทๆงใงใใใใจใ่ๆ
ฎใใฆใใ ใใใ'],
['ใใณใฎใณใใธใฃใณใฐใซใฎ็ๆงใงใใใใจใๆญฃๅฝๅใใใใใซ่ชฌๆใใฆใใ ใใใ']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|