Spaces:
Runtime error
Runtime error
File size: 14,281 Bytes
a19a983 acb7b9c a19a983 acb7b9c a1317da acb7b9c a19a983 a1317da a19a983 2cb7b84 a19a983 2cb7b84 acb7b9c a1317da 2cb7b84 acb7b9c a19a983 acb7b9c a1317da acb7b9c a19a983 7a2c982 a19a983 acb7b9c a19a983 7a2c982 a19a983 acb7b9c a19a983 acb7b9c a19a983 acb7b9c a19a983 acb7b9c 0ff95ad a19a983 2cb7b84 acb7b9c a19a983 2cb7b84 acb7b9c a19a983 2cb7b84 acb7b9c a19a983 2cb7b84 acb7b9c a1317da a19a983 2cb7b84 acb7b9c a19a983 2cb7b84 acb7b9c a19a983 a1317da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
"""
This script contains the first step of data synthesis - generation of the json files containing
all the product categories, product features and synthetic product reviews. The reuslt of this script
is the generation of the json files in the data directory.
"""
import json
import openai
import os
import sys
import time
from typing import Dict, List
from src.common import data_dir
class Review:
"""
Simple representation of a user Review of a Product
"""
def __init__(self, stars: int, review_text: str):
self.stars = stars
self.review_text = review_text
class Product:
"""
Simple representation of a product
"""
def __init__(self, category: str, name: str, description: str, price: float, features: List[str], reviews: List[Review]):
self.category = category
self.name = name
self.description = description
self.price = price
self.features = features
self.reviews = reviews
class DataPrompt:
"""
Class as a Name Space to hold prompts used in the data generation process
"""
@staticmethod
def prompt_setup() -> str:
return "You are a marketing assistant for consumer home electronics manufacturer ElectroHome. You are polite and succinct.\n\n"
@staticmethod
def prompt_setup_user() -> str:
return "You are a customer of consumer home electronics manufacturer ElectroHome, and are reviewing a product you have purchased and used.\n\n"
@staticmethod
def products_for_category(category: str, features: List[str], k: int) -> str:
existing_products = product_names_for_category(category)
prompt = f"Suggest exactly {k} products in the category {category}. \nPlease give the products realistic product names but cover a range of different customer needs (e.g budget, premium, compact, eco, family).\nDo not include the customer needs words in the product name.\nProduct names must be unique."
if len(existing_products) > 0:
prompt += f" The following product names are already in use, so do not duplicate them: {', '.join(existing_products)}"
prompt += "\nPlease select between 4 and 8 features for each product from the following options: {', '.join(features)}.\n"
prompt += """
Please format the response as json in this style:
{
"products": [
{
"name": "product name",
"features": ["feature 1", "feature 2"],
"price": "$49.99",
"description": "A description of the product in 50 to 100 words."
}
]
}"""
return prompt
@staticmethod
def format_features(features: List[str]) -> str:
"""
Convenience method to do comma/and join
"""
if len(features) == 0:
return ""
if len(features) == 1:
return features[0]
return (', '.join(features[:-1])) + f' and {features[-1]}'
@staticmethod
def reviews_for_product(product: Product, k: int) -> str:
prompt = f"Suggest exactly {k} reviews for this product.\nThe product is a {product.category.lower()[0:-1]} named the '{product.name}', which features {DataPrompt.format_features(product.features)}.\nFirst pick an integer star rating from 1 to 5 stars, where 1 is bad and 5 is great, for the review.\nNext write the review text of between 50 and 100 words for the review from the user. The text in the review should align to the star rating, so if the rating is 1 the review would be critical and if the rating is 5 the review would be positive.\n"
prompt += """
Please format the response as json in this style:
{
"reviews": [
{
"stars": 3,
"review_text": "Between 50 and 100 words reviewing the product go here."
}
]
}"""
return prompt
def generate_products(category: str, features: List[str], k: int = 20) -> None:
"""
Call GPT3.5 Turbo model and get it to generate some products based on a category
Insert those products into the category
"""
prompt = DataPrompt.products_for_category(category, features, k)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{"role": "system", "content": DataPrompt.prompt_setup()},
{"role": "user", "content": prompt}
],
temperature=1.0
)
output_text = response['choices'][0]['message']['content']
add_products(category, output_text, k)
def category_product_file(category: str) -> str:
"""
Get the file containing products in a category
"""
output_file_name = f"products_{category.lower().replace(' ', '_')}.json"
return os.path.join(data_dir, 'json', output_file_name)
def category_review_file(category: str) -> str:
"""
Utility to get the file containing reviews of products in a category
"""
output_file_name = f"reviews_{category.lower().replace(' ', '_')}.json"
return os.path.join(data_dir, 'json', output_file_name)
def products_for_category(category: str) -> List[Product]:
"""
Load all the associated products which have been generated for this
category, and the reviews, then merge the two and return a list of
all the products in this category along with their reviews
"""
cat_file = category_product_file(category)
if not os.path.exists(cat_file):
return []
else:
products = []
with open(cat_file, 'r') as f:
category_json = json.load(f)
for prod in category_json['products']:
price = float(prod['price'][1:])
p = Product(category, prod['name'], prod['description'], price, prod['features'], [])
products.append(p)
reviews_file = category_review_file(category)
if os.path.exists(reviews_file):
with open(reviews_file, 'r') as f:
review_json = json.load(f)
for p in products:
if p.name in review_json:
for review in review_json[p.name]:
p.reviews.append(Review(review['stars'], review['review_text']))
return products
def product_names_for_category(category: str) -> List[str]:
"""
Get a list of just the names of the products in this category
from the generated product json file
"""
cat_file = category_product_file(category)
if not os.path.exists(cat_file):
return []
else:
names = []
with open(cat_file, 'r') as f:
category_json = json.load(f)
for prod in category_json['products']:
names.append(prod['name'])
return names
def add_products(category: str, product_json: str, k: int) -> None:
"""
Given a string of json representing newly generated products,
add those products to the existing product json file for this category
"""
cat_file = category_product_file(category)
if not os.path.exists(cat_file):
with open(cat_file, 'w') as f:
f.write(product_json)
else:
with open(cat_file, 'r') as f:
existing_products = json.load(f)
new_products = json.loads(product_json)
count = 0
for new_p in new_products['products']:
if count >= k:
break
existing_products['products'].append(new_p)
count += 1
with open(cat_file, 'w') as f:
json.dump(existing_products, f, indent=2)
def get_categories_and_features() -> Dict[str, List[str]]:
"""
Get dictionary of will each category as a key and the list of available
features to products in that category as the value
"""
product_features_file = os.path.join(data_dir, 'json', 'product_features.json')
cats_and_feats = {}
with open(product_features_file, 'r') as f:
feature_json = json.load(f)
for cat in feature_json['categories']:
cat_name = cat['category']
cat_features = cat['features']
cats_and_feats[cat_name] = cat_features
return cats_and_feats
def generate_all_products(target_count=40) -> None:
"""
Generate all products for all categories, trying to reach a given target count
of products.
"""
product_features_file = os.path.join(data_dir, 'product_features.json')
with open(product_features_file, 'r') as f:
feature_json = json.load(f)
for cat in feature_json['categories']:
cat_name = cat['category']
cat_features = cat['features']
existing_products = product_names_for_category(cat_name)
if len(existing_products) < target_count:
num_to_generate = target_count - len(existing_products)
print(f"Generating {num_to_generate} {cat_name}")
generate_products(cat_name, cat_features, num_to_generate)
else:
print(f"Skipping {cat_name} as targetting {target_count} and already have {len(existing_products)}")
def dump_products_to_csv() -> None:
"""
Dump a csv file for debug, for every product showing category name and product name
"""
cats = get_categories_and_features().keys()
cat_keys = []
for cat in cats:
for prod in product_names_for_category(cat):
cat_keys.append(f"{cat},{prod}")
dump_file = os.path.join(data_dir, "products.csv")
with open(dump_file, 'w') as f:
f.write('\n'.join(cat_keys))
def generate_reviews(target_count: int) -> None:
"""
Generate reviews for each category up to a target count of reviews
"""
for cat in get_categories_and_features().keys():
generate_reviews_for_category(cat, target_count)
def generate_reviews_for_category(category: str, target_count: int) -> None:
"""
Generate reviews for a specific category up to a given target number of reviews
"""
batch_size = 25 # Max number of reviews to request in one go from GPT so as not to overflow the token limit
# Set up a loop to continue trying to find more work to do until complete
working = True
recent_exception = False
while working:
working = False
products = products_for_category(category)
for prod in products:
if len(prod.reviews) < target_count:
working = True
reviews_to_request = min([batch_size, target_count - len(prod.reviews)])
try:
print(f'{prod.category[:-1]}: {prod.name} has {len(prod.reviews)} reviews. Requesting {reviews_to_request} more.')
generate_reviews_for_product(prod, reviews_to_request)
recent_exception = False
except openai.error.ServiceUnavailableError:
print("GPT is overloaded - waiting 10 seconds.....")
recent_exception = False
time.sleep(10)
except Exception as e:
print(f"Exception {e} in generating reviews")
if recent_exception:
print(f"Exception appears to be stubborn so throwing out")
raise e
recent_exception = True
else:
print(f'{prod.category[:-1]}: {prod.name} has {len(prod.reviews)} reviews ({target_count} requested). Skipping.')
def generate_reviews_for_product(product: Product, k: int) -> None:
"""
Generate a number of reviews from GPT3.5 for a specific product and add them to the product
"""
prompt = DataPrompt.reviews_for_product(product, k)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{"role": "system", "content": DataPrompt.prompt_setup_user()},
{"role": "user", "content": prompt}
],
temperature=1.0
)
output_text = response['choices'][0]['message']['content']
add_reviews_to_product(output_text, product)
def add_reviews_to_product(reviews_json: str, product: Product) -> None:
"""
Load the reviews file containing this product category, append this review to the list and
re-save the file
"""
reviews_json = json.loads(reviews_json)
reviews_file = category_review_file(product.category)
if not os.path.exists(reviews_file):
category_data = {product.name: reviews_json['reviews']}
with open(reviews_file, 'w') as f:
json.dump(category_data, f, indent=2)
else:
with open(reviews_file, 'r') as f:
existing_reviews = json.load(f)
if product.name in existing_reviews:
for r in reviews_json['reviews']:
existing_reviews[product.name].append(r)
else:
existing_reviews[product.name] = reviews_json['reviews']
with open(reviews_file, 'w') as f:
json.dump(existing_reviews, f, indent=2)
"""
# The sequence of steps to arrive at the final JSON files containing the data is as follows:
# Manual step - generated product categories and product features from GPT and loaded to file
# run generate_all_products() # Generate 40 products in each category
# run dump_products_to_csv() # Dump the products to csv for manual name check
# Manual step - review names and tweak some of them directly in the json files
# run generate_reviews_for_category(50) for each category # Generate 50 reviews per product in every category
"""
if __name__ == "__main__":
# Step 1 - manual - not shown here. See /data/json/product_categories.json and the /data/json/product_features.json files for the result
# Step 2 - generate the products within each category
# generate_all_products()
# Step 3 - dump the products to a CSV file for a manual check
# dump_products_to_csv()
# Step 4 - review and tweak names - manual - results are in the in the products_category.json files
# Step 5 - generate reviews for every product in each category (1 category at a time). Note run in parallel from command line.
# generate_reviews_for_category(sys.argv[1], int(sys.argv[2]))
print("No steps set up to run to avoid over-writing data. Please edit the file generate_data.py if you want to re-run generation")
|