Spaces:
Runtime error
Runtime error
File size: 9,880 Bytes
6ed1db6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import torch
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from .block import block_forward, single_block_forward
from .lora_controller import enable_lora
from diffusers.models.transformers.transformer_flux import (
FluxTransformer2DModel,
Transformer2DModelOutput,
USE_PEFT_BACKEND,
is_torch_version,
scale_lora_layers,
unscale_lora_layers,
logger,
)
import numpy as np
def prepare_params(
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
**kwargs: dict,
):
return (
hidden_states,
encoder_hidden_states,
pooled_projections,
timestep,
img_ids,
txt_ids,
guidance,
joint_attention_kwargs,
controlnet_block_samples,
controlnet_single_block_samples,
return_dict,
)
def tranformer_forward(
transformer: FluxTransformer2DModel,
condition_latents: torch.Tensor,
condition_ids: torch.Tensor,
condition_type_ids: torch.Tensor,
model_config: Optional[Dict[str, Any]] = {},
return_conditional_latents: bool = False,
c_t=0,
**params: dict,
):
self = transformer
use_condition = condition_latents is not None
use_condition_in_single_blocks = model_config.get(
"use_condition_in_single_blocks", True
)
# if return_conditional_latents is True, use_condition and use_condition_in_single_blocks must be True
assert not return_conditional_latents or (
use_condition and use_condition_in_single_blocks
), "`return_conditional_latents` is True, `use_condition` and `use_condition_in_single_blocks` must be True"
(
hidden_states,
encoder_hidden_states,
pooled_projections,
timestep,
img_ids,
txt_ids,
guidance,
joint_attention_kwargs,
controlnet_block_samples,
controlnet_single_block_samples,
return_dict,
) = prepare_params(**params)
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
joint_attention_kwargs is not None
and joint_attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)):
hidden_states = self.x_embedder(hidden_states)
condition_latents = self.x_embedder(condition_latents) if use_condition else None
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
cond_temb = (
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
if guidance is None
else self.time_text_embed(
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
)
)
if hasattr(self, "cond_type_embed") and condition_type_ids is not None:
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0])
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype))
cond_temb = cond_temb + cond_type_emb
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if use_condition:
cond_ids = condition_ids
cond_rotary_emb = self.pos_embed(cond_ids)
# hidden_states = torch.cat([hidden_states, condition_latents], dim=1)
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states, condition_latents = block_forward(
block,
model_config=model_config,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
condition_latents=condition_latents if use_condition else None,
temb=temb,
cond_temb=cond_temb if use_condition else None,
cond_rotary_emb=cond_rotary_emb if use_condition else None,
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(
controlnet_block_samples
)
interval_control = int(np.ceil(interval_control))
hidden_states = (
hidden_states
+ controlnet_block_samples[index_block // interval_control]
)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
result = single_block_forward(
block,
model_config=model_config,
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
**(
{
"condition_latents": condition_latents,
"cond_temb": cond_temb,
"cond_rotary_emb": cond_rotary_emb,
}
if use_condition_in_single_blocks and use_condition
else {}
),
)
if use_condition_in_single_blocks and use_condition:
hidden_states, condition_latents = result
else:
hidden_states = result
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(
controlnet_single_block_samples
)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if return_conditional_latents:
condition_latents = (
self.norm_out(condition_latents, cond_temb) if use_condition else None
)
condition_output = self.proj_out(condition_latents) if use_condition else None
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (
(output,) if not return_conditional_latents else (output, condition_output)
)
return Transformer2DModelOutput(sample=output)
|