Spaces:
Runtime error
Runtime error
File size: 8,628 Bytes
e72aedf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
"""
Common utilities.
"""
from asyncio import AbstractEventLoop
import json
import logging
import logging.handlers
import os
import platform
import sys
from typing import AsyncGenerator, Generator
import warnings
import requests
import torch
from fastchat.constants import LOGDIR
handler = None
visited_loggers = set()
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
if sys.version_info[1] >= 9:
# This is for windows
logging.basicConfig(level=logging.INFO, encoding="utf-8")
else:
if platform.system() == "Windows":
warnings.warn(
"If you are running on Windows, "
"we recommend you use Python >= 3.9 for UTF-8 encoding."
)
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when="D", utc=True, encoding="utf-8"
)
handler.setFormatter(formatter)
for logger in [stdout_logger, stderr_logger, logger]:
if logger in visited_loggers:
continue
visited_loggers.add(logger)
logger.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
encoded_message = line.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
self.linebuf = ""
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def get_gpu_memory(max_gpus=None):
"""Get available memory for each GPU."""
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024**3)
allocated_memory = torch.cuda.memory_allocated() / (1024**3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def violates_moderation(text):
"""
Check whether the text violates OpenAI moderation API.
"""
import openai
try:
flagged = openai.Moderation.create(input=text)["results"][0]["flagged"]
except openai.error.OpenAIError as e:
flagged = False
except (KeyError, IndexError) as e:
flagged = False
return flagged
def clean_flant5_ckpt(ckpt_path):
"""
Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings,
Use this function to make sure it can be correctly loaded.
"""
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json")
index_json = json.load(open(index_file, "r"))
weightmap = index_json["weight_map"]
share_weight_file = weightmap["shared.weight"]
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[
"shared.weight"
]
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]:
weight_file = weightmap[weight_name]
weight = torch.load(os.path.join(ckpt_path, weight_file))
weight[weight_name] = share_weight
torch.save(weight, os.path.join(ckpt_path, weight_file))
def pretty_print_semaphore(semaphore):
"""Print a semaphore in better format."""
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
"""A javascript function to get url parameters for the gradio web server."""
get_window_url_params_js = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log("url_params", url_params);
return url_params;
}
"""
def iter_over_async(
async_gen: AsyncGenerator, event_loop: AbstractEventLoop
) -> Generator:
"""
Convert async generator to sync generator
:param async_gen: the AsyncGenerator to convert
:param event_loop: the event loop to run on
:returns: Sync generator
"""
ait = async_gen.__aiter__()
async def get_next():
try:
obj = await ait.__anext__()
return False, obj
except StopAsyncIteration:
return True, None
while True:
done, obj = event_loop.run_until_complete(get_next())
if done:
break
yield obj
def detect_language(text: str) -> str:
"""Detect the langauge of a string."""
import polyglot # pip3 install polyglot pyicu pycld2
from polyglot.detect import Detector
from polyglot.detect.base import logger as polyglot_logger
import pycld2
polyglot_logger.setLevel("ERROR")
try:
lang_code = Detector(text).language.name
except (pycld2.error, polyglot.detect.base.UnknownLanguage):
lang_code = "unknown"
return lang_code
def parse_gradio_auth_creds(filename: str):
"""Parse a username:password file for gradio authorization."""
gradio_auth_creds = []
with open(filename, "r", encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(",") if x.strip()]
if gradio_auth_creds:
auth = [tuple(cred.split(":")) for cred in gradio_auth_creds]
else:
auth = None
return auth
def is_partial_stop(output: str, stop_str: str):
"""Check whether the output contains a partial stop str."""
for i in range(0, min(len(output), len(stop_str))):
if stop_str.startswith(output[-i:]):
return True
return False
def run_cmd(cmd: str):
"""Run a bash command."""
print(cmd)
return os.system(cmd)
def is_sentence_complete(output: str):
"""Check whether the output is a complete sentence."""
end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”")
return output.endswith(end_symbols)
def get_context_length(config):
"""Get the context length of a model from a huggingface model config."""
if hasattr(config, "max_sequence_length"):
return config.max_sequence_length
elif hasattr(config, "seq_length"):
return config.seq_length
elif hasattr(config, "max_position_embeddings"):
return config.max_position_embeddings
else:
return 2048
|