Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,660 Bytes
a0fd130 c2a23ec a0fd130 50c9b6c a0fd130 50c9b6c a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 5bc94d4 e788852 a0fd130 c2a23ec e788852 a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 32d7dff a0fd130 32d7dff a0fd130 332e4ba a0fd130 5bc94d4 c2a23ec a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 c63bc28 a0fd130 5bc94d4 332e4ba a0fd130 c2a23ec a0fd130 e788852 a0fd130 deed1cf 64fb155 deed1cf 64fb155 50c9b6c a0fd130 50c9b6c c2a23ec a0fd130 c2a23ec 50c9b6c a0fd130 e788852 a0fd130 50c9b6c a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 c2a23ec a0fd130 c2a23ec c63bc28 a0fd130 c2a23ec 2dfc048 332e4ba a0fd130 deed1cf 9fb2d90 deed1cf 9fb2d90 a0fd130 c2a23ec a0fd130 5bc94d4 9b99398 5bc94d4 e4c28ee 5bc94d4 a8cd550 e788852 5bc94d4 a0fd130 fcd1803 a0fd130 fcd1803 a0fd130 fcd1803 a0fd130 50c9b6c a0fd130 6b5ee45 a0fd130 6b5ee45 a0fd130 50c9b6c c2a23ec f28533c a0fd130 8da6ca9 a0fd130 314b56e a0fd130 bacd10b 0d52ff1 8da6ca9 41446e8 a0fd130 c2a23ec 50c9b6c c2a23ec a0fd130 c2a23ec a0fd130 5bc94d4 2dfc048 5bc94d4 a0fd130 50c9b6c a0fd130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import warnings
warnings.filterwarnings("ignore")
from diffusers import DiffusionPipeline, DDIMInverseScheduler, DDIMScheduler, AutoencoderKL
import torch
from typing import Optional
from tqdm import tqdm
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import gc
import gradio as gr
import numpy as np
import os
import pickle
import argparse
from PIL import Image
import requests
import math
import torch
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
import spaces
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
def save_state_to_file(state):
filename = "state.pkl"
with open(filename, "wb") as f:
pickle.dump(state, f)
return filename
def load_state_from_file(filename):
with open(filename, "rb") as f:
state = pickle.load(f)
return state
guidance_scale_value = 7.5
num_inference_steps = 10
weights = {}
res_list = []
foreground_mask = None
heighest_resolution = -1
signal_value = 2.0
blur_value = None
allowed_res_max = 1.0
def load_pipeline():
model_id = "runwayml/stable-diffusion-v1-5"
vae_model_id = "runwayml/stable-diffusion-v1-5"
vae_folder = "vae"
guidance_scale_value = 7.5
resadapter_model_name = "resadapter_v2_sd1.5"
res_range_min = 128
res_range_max = 1024
torch_dtype = torch.float16
# torch_dtype = torch.float16
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype)
pipe.load_lora_weights(
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
adapter_name="res_adapter",
) # load lora weights
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
pipe.unet.load_state_dict(
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
strict=False,
) # load norm weights
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
return pipe, inverse_scheduler, scheduler
def load_qwen():
# default: Load the model on the available device(s)
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
return vlm_model, processor
def weight_population(layer_type, resolution, depth, value):
# Check if layer_type exists, if not, create it
if layer_type not in weights:
weights[layer_type] = {}
# Check if resolution exists under layer_type, if not, create it
if resolution not in weights[layer_type]:
weights[layer_type][resolution] = {}
global heighest_resolution
if resolution > heighest_resolution:
heighest_resolution = resolution
# Add/Modify the value at the specified depth (which can be a string)
weights[layer_type][resolution][depth] = value
def resize_image_with_aspect(image, res_range_min=128, res_range_max=1024):
# Get the original width and height of the image
width, height = image.size
# Determine the scaling factor to maintain the aspect ratio
scaling_factor = 1
if width < res_range_min or height < res_range_min:
scaling_factor = max(res_range_min / width, res_range_min / height)
elif width > res_range_max or height > res_range_max:
scaling_factor = min(res_range_max / width, res_range_max / height)
# Calculate the new dimensions
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
print(f'{new_width}-{new_height}')
# Resize the image with the new dimensions while maintaining the aspect ratio
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return resized_image
@spaces.GPU()
def reconstruct(input_img, caption):
pipe, inverse_scheduler, scheduler= load_pipeline()
pipe.to("cuda")
global weights
weights = {}
prompt = caption
img = input_img
img = resize_image_with_aspect(img, res_range_min, res_range_max)
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
if torch_dtype == torch.float16:
loaded_image = transform(img).half().to("cuda").unsqueeze(0)
else:
loaded_image = transform(img).to("cuda").unsqueeze(0)
if loaded_image.shape[1] == 4:
loaded_image = loaded_image[:,:3,:,:]
with torch.no_grad():
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
# notice we disabled the CFG here by setting guidance scale as 1
guidance_scale = 1.0
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = inverse_scheduler.timesteps
latents = real_image_latents
inversed_latents = [latents]
def store_latent(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
with torch.no_grad():
if step != num_inference_steps - 1:
inversed_latents.append(latents)
return callback_kwargs
with torch.no_grad():
replace_attention_processor(pipe.unet, True)
pipe.scheduler = inverse_scheduler
latents = pipe(prompt=prompt,
guidance_scale = guidance_scale,
output_type="latent",
return_dict=False,
num_inference_steps=num_inference_steps,
latents=latents,
callback_on_step_end=store_latent,
callback_on_step_end_tensor_inputs=["latents"],)[0]
# initial state
real_image_initial_latents = latents
guidance_scale = guidance_scale_value
scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = scheduler.timesteps
def adjust_latent(pipe, step, timestep, callback_kwargs):
with torch.no_grad():
callback_kwargs["latents"] = inversed_latents[len(timesteps) - 1 - step].detach()
return callback_kwargs
with torch.no_grad():
replace_attention_processor(pipe.unet, True)
intermediate_values = real_image_initial_latents.clone()
pipe.scheduler = scheduler
intermediate_values = pipe(prompt=prompt,
guidance_scale = guidance_scale,
output_type="latent",
return_dict=False,
num_inference_steps=num_inference_steps,
latents=intermediate_values,
callback_on_step_end=adjust_latent,
callback_on_step_end_tensor_inputs=["latents"],)[0]
image = pipe.vae.decode(intermediate_values / pipe.vae.config.scaling_factor, return_dict=False)[0]
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
image_np = (image_np * 255).astype(np.uint8)
update_scale(12)
real_cpu = real_image_initial_latents.detach().cpu()
inversed_cpu = [x.detach().cpu() for x in inversed_latents]
return image_np, caption, 12, [
caption,
real_cpu,
inversed_cpu,
weights
]
class AttnReplaceProcessor(AttnProcessor2_0):
def __init__(self, replace_all, layer_type, layer_count, blur_sigma=None):
super().__init__()
self.replace_all = replace_all
self.layer_type = layer_type
self.layer_count = layer_count
self.weight_populated = False
self.blur_sigma = blur_sigma
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
dimension_squared = hidden_states.shape[1]
is_cross = not encoder_hidden_states is None
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
height = width = math.isqrt(query.shape[2])
if self.replace_all:
weight_value = weights[self.layer_type][dimension_squared][self.layer_count]
ucond_attn_scores, attn_scores = query.chunk(2)
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
ucond_attn_scores, attn_scores = key.chunk(2)
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
else:
weight_population(self.layer_type, dimension_squared, self.layer_count, 1.0)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def replace_attention_processor(unet, clear=False, blur_sigma=None):
attention_count = 0
for name, module in unet.named_modules():
if "attn1" in name and "to" not in name:
layer_type = name.split(".")[0].split("_")[0]
attention_count += 1
if not clear:
if layer_type == "down":
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
elif layer_type == "mid":
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
elif layer_type == "up":
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
else:
module.processor = AttnReplaceProcessor(False, layer_type, attention_count, blur_sigma=blur_sigma)
@spaces.GPU()
def apply_prompt(meta_data, new_prompt):
pipe, _, scheduler = load_pipeline()
pipe.to("cuda")
caption, real_latents_cpu, inversed_latents_cpu, saved_weights = meta_data
# overwrite the global so your processor can see it
global weights
weights = saved_weights
# move everything onto CUDA (and match dtype if needed)
device = next(pipe.unet.parameters()).device
dtype = next(pipe.unet.parameters()).dtype
real_latents = real_latents_cpu.to(device=device, dtype=dtype)
inversed_latents = [x.to(device=device, dtype=dtype) for x in inversed_latents_cpu]
# now all your latents live on CUDA, so the callback won't mix devices
initial_latents = torch.cat([real_latents] * 2)
negative_prompt = ""
inference_steps = len(inversed_latents)
guidance_scale = guidance_scale_value
scheduler.set_timesteps(inference_steps, device="cuda")
timesteps = scheduler.timesteps
def adjust_latent(pipe, step, timestep, callback_kwargs):
replace_attention_processor(pipe.unet)
with torch.no_grad():
callback_kwargs["latents"][1] = callback_kwargs["latents"][1] + (inversed_latents[len(timesteps) - 1 - step].detach() - callback_kwargs["latents"][0])
callback_kwargs["latents"][0] = inversed_latents[len(timesteps) - 1 - step].detach()
return callback_kwargs
with torch.no_grad():
replace_attention_processor(pipe.unet)
pipe.scheduler = scheduler
latents = pipe(prompt=[caption, new_prompt],
negative_prompt=[negative_prompt, negative_prompt],
guidance_scale = guidance_scale,
output_type="latent",
return_dict=False,
num_inference_steps=num_inference_steps,
latents=initial_latents,
callback_on_step_end=adjust_latent,
callback_on_step_end_tensor_inputs=["latents"],)[0]
replace_attention_processor(pipe.unet, True)
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
image_np = (image_np * 255).astype(np.uint8)
return image_np
@spaces.GPU()
def choose_caption(input_image):
vlm_model, processor = load_qwen()
image = input_image.convert("RGB")
# (b) Wrap into messages
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{
"type": "text",
"text": (
"Describe this image in one sentence, starting with the main object, "
"then its key features, followed by the background elements. "
"Use a clear, concise style, e.g., 'a photo of a plastic bottle on some sand, beach background, sky background'."
),
},
],
}
]
# 1) Turn messages → vision_inputs + (maybe) video_inputs
image_inputs, video_inputs = process_vision_info(messages)
# 2) Build text prompt from messages
text_prompt = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# 3) Tokenize both text and vision
inputs = processor(
text=[text_prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
out_ids = vlm_model.generate(**inputs, max_new_tokens=32)
orig_ids = [out_ids[i][len(inputs.input_ids[i]):] for i in range(len(out_ids))]
caption = processor.batch_decode(orig_ids, skip_special_tokens=True)[0]
return caption
@spaces.GPU(duration=30)
def on_image_change(filepath):
pipe, inverse_scheduler, scheduler = load_pipeline()
filename = os.path.splitext(os.path.basename(filepath))[0]
if filename not in ["example1","example3","example4"]:
return filepath, None, None, None, None, None
# 1) load the raw state (might contain CUDA tensors!)
caption, real_latents, inversed_latents, saved_weights = load_state_from_file(
f"assets/{filename}-turbo.pkl"
)
# 2) immediately move all tensors to CPU
real_cpu = real_latents.detach().cpu()
inversed_cpu= [x.detach().cpu() for x in inversed_latents]
# 3) repack a truly CPU-only state
cpu_meta_data = (caption, real_cpu, inversed_cpu, saved_weights)
# 4) your existing logic can then run on GPU, but it will
# consume only CPU tensors and return only CPU tensors
_, _, _, global_weights = cpu_meta_data
global weights; weights = global_weights
num_inference_steps = 10
if filename == "example1":
scale_value, new_prompt = 8, "a photo of a tree, summer, colourful"
elif filename == "example3":
scale_value, new_prompt = 6, "a realistic photo of a female warrior, ..."
else:
scale_value, new_prompt = 13, "a photo of plastic bottle on some sand, ..."
update_scale(scale_value)
img = apply_prompt(cpu_meta_data, new_prompt)
# 5) return only CPU objects (img is still a numpy array)
return filepath, img, cpu_meta_data, num_inference_steps, scale_value, scale_value
def update_value(value, layer_type, resolution, depth):
global weights
weights[layer_type][resolution][depth] = value
def update_step(value):
global num_inference_steps
num_inference_steps = value
def adjust_ends(values, adjustment):
# Forward loop to adjust the first valid element from the left
for i in range(len(values)):
if (adjustment > 0 and values[i + 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
values[i] = values[i] + adjustment
break
# Backward loop to adjust the first valid element from the right
for i in range(len(values)-1, -1, -1):
if (adjustment > 0 and values[i - 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
values[i] = values[i] + adjustment
break
return values
max_scale_value = 16
def update_scale(scale):
global weights
value_count = 0
for outer_key, inner_dict in weights.items():
for inner_key, values in inner_dict.items():
for _, value in enumerate(values):
value_count += 1
list_values = [1.0] * value_count
for _ in range(scale, max_scale_value):
adjust_ends(list_values, -0.5)
value_index = 0
for outer_key, inner_dict in weights.items():
for inner_key, values in inner_dict.items():
for idx, value in enumerate(values):
weights[outer_key][inner_key][value] = list_values[value_index]
value_index += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
args = parser.parse_args()
num_inference_steps = 10
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
vae_folder = ""
guidance_scale_value = 7.5
resadapter_model_name = "resadapter_v2_sdxl"
res_range_min = 256
res_range_max = 1536
torch_dtype = torch.float16
with gr.Blocks(analytics_enabled=False) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<div style="display: flex; justify-content: center;">
<img src="https://github.com/user-attachments/assets/9b92a2cd-4c1f-4de2-87f0-09053fe129ff" alt="Logo">
</div>
<h1>Out of Focus XL v1.0 Turbo</h1>
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/OutofAi/OutofFocus">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>  
<a href="https://twitter.com/alexandernasa" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=alexnasa"></a>  
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=OutofAi"></a>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
example_input = gr.Image(type="filepath", visible=False)
image_input = gr.Image(type="pil", label="Upload Source Image")
steps_slider = gr.Slider(minimum=5, maximum=50, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
reconstruct_button = gr.Button("Reconstruct")
with gr.Column():
with gr.Row():
reconstructed_image = gr.Image(type="pil", label="Reconstructed")
invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
interpolate_slider = gr.Slider(minimum=0, maximum=max_scale_value, step=1, value=max_scale_value, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or adding words at the end; swap words instead of adding or removing them for better results")
with gr.Row():
apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)
with gr.Row():
show_case = gr.Examples(
examples=[
["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background", 13],
["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful", 8],
[
"assets/example3.png",
"a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
"a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
6 ,
],
],
inputs=[example_input, prompt_input, new_prompt_input, interpolate_slider],
label=None,
)
meta_data = gr.State()
example_input.change(fn=on_image_change, inputs=example_input, outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]).then(lambda: gr.update(interactive=True), outputs=apply_button).then(
lambda: gr.update(interactive=True), outputs=new_prompt_input
)
image_input.upload(fn=choose_caption, inputs=image_input, outputs=[prompt_input])
steps_slider.release(update_step, inputs=steps_slider)
interpolate_slider.release(update_scale, inputs=interpolate_slider)
value_trigger = True
def triggered():
global value_trigger
value_trigger = not value_trigger
return value_trigger
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, interpolate_slider, meta_data]).then(lambda: gr.update(interactive=True), outputs=reconstruct_button).then(lambda: gr.update(interactive=True), outputs=new_prompt_input).then(
lambda: gr.update(interactive=True), outputs=apply_button
)
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=reconstruct_button)
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=apply_button)
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
demo.queue()
demo.launch(share=args.share, inbrowser=True) |