File size: 1,566 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

from pathlib import Path
import torch
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.misc.image_io import save_interpolated_video
from src.model.ply_export import export_ply
from src.model.model.anysplat import AnySplat
from src.utils.image import process_image

def main():
    # Load the model from Hugging Face
    model = AnySplat.from_pretrained("lhjiang/anysplat")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    model.eval()
    for param in model.parameters():
        param.requires_grad = False
    
    # Load Images
    image_folder = "examples/vrnerf/riverview"
    images = sorted([os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
    images = [process_image(img_path) for img_path in images]
    images = torch.stack(images, dim=0).unsqueeze(0).to(device) # [1, K, 3, 448, 448]
    b, v, _, h, w = images.shape
    
    # Run Inference
    gaussians, pred_context_pose = model.inference((images+1)*0.5)

    # Save the results
    pred_all_extrinsic = pred_context_pose['extrinsic']
    pred_all_intrinsic = pred_context_pose['intrinsic']
    save_interpolated_video(pred_all_extrinsic, pred_all_intrinsic, b, h, w, gaussians, image_folder, model.decoder)
    export_ply(gaussians.means[0], gaussians.scales[0], gaussians.rotations[0], gaussians.harmonics[0], gaussians.opacities[0], Path(image_folder) / "gaussians.ply")
    
if __name__ == "__main__":
    main()